Let be an elliptic fibration on a K3 surface S. Then the composition gives an Abelian fibration on S[n]. Let E be the exceptional divisor of π, then symnφ∘π(E) is of dimension n−1. We prove the inverse in this Note.
Soit une fibration elliptique sur une surface S, K3. Alors la composition donne une fibration abélienne sur S[n]. Soit E le diviseur exceptionel de π, alors symnφ∘π(E) est de dimension n−1. Dans cette Note, nous démontrons la réciproque.
Accepted:
Published online:
Baohua Fu 1
@article{CRMATH_2003__337_9_593_0, author = {Baohua Fu}, title = {Abelian fibrations on {\protect\emph{S}\protect\textsuperscript{[\protect\emph{n}]}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {593--596}, publisher = {Elsevier}, volume = {337}, number = {9}, year = {2003}, doi = {10.1016/j.crma.2003.09.022}, language = {en}, }
Baohua Fu. Abelian fibrations on S[n]. Comptes Rendus. Mathématique, Volume 337 (2003) no. 9, pp. 593-596. doi : 10.1016/j.crma.2003.09.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.09.022/
[1] Variétés dont la première classe de Chern est nulle, J. Differential Geom., Volume 18 (1983), pp. 755-782
[2] Rational curves on holomorphic symplectic fourfolds, Geom. Funct. Anal., Volume 11 (2001) no. 6, pp. 1201-1228
[3] Projective manifolds dominated by Abelian varieties, Math. Z., Volume 238 (2001), pp. 89-100
[4] Integrable symplectic structures on compact complex manifolds, Math. USSR-Sb., Volume 59 (1988) no. 2, pp. 459-469
[5] On fibre space structures of a projective irreducible symplectic manifold, Topology, Volume 38 (1999) no. 1, pp. 79-83
[6] Abelian Varieties. With Appendices by C.P. Ramanujam and Yuri Manin, Reprint. Stud. Math., 5, Tata Institute of Fundamental Research, Bombay, 1985 (Oxford etc.: Oxford University Press)
[7] Abelian fibred holomorphic symplectic manifolds, Turkish J. Math., Volume 27 (2003) no. 1, pp. 197-230
Cited by Sources:
Comments - Policy