Let G be a bounded domain in such that is strictly pseudoconvex and U an open subset of bG. We define an open subset of with the property such that the following extension theorem holds true: for every ϕ∈C(U) there exist two functions such that Φ±|U=ϕ and the graphs Γ(Φ±) of Φ± are Levi-flat over . Moreover, for each such that Φ|U=ϕ and Γ(Φ) is Levi-flat over one has Φ−⩽Φ⩽Φ+ on . We also show that if G is diffeomorphic to a 3-ball and U is the union of simply-connected domains each of which is contained either in the “upper” or in the “lower” part of bG (with respect to the u-direction), then is the maximal domain of Levi-flat extensions for some function ϕ∈C(U).
Soient G un domaine borné dans tel que soit strictement pseudoconvexe et U un sous-ensemble ouvert de bG. On définit un sous-ensemble ouvert de avec la propriété tel que le résultat suivant soit valable : pour toute fonction ϕ∈C(U) il existe deux fonctions telles que Φ±|U=ϕ et les graphes Γ(Φ±) de Φ± soient Levi-plats sur . De plus, pour toute telle que Φ|U=ϕ et Γ(Φ) soit Levi-plat sur , on a Φ−⩽Φ⩽Φ+ sur . On démontre aussi que si G est difféomorphe à la boule et U est une réunion de domaines simplement connexes, chacun d'entre eux étant contenu soit dans la partie supérieure, soit dans la partie inférieure de bG (par rapport à la direction u), alors est le domaine maximal pour l'extension Levi-plate d'une certaine fonction ϕ∈C(U).
Accepted:
Published online:
Nikolay Shcherbina 1; Giuseppe Tomassini 2
@article{CRMATH_2003__337_11_699_0, author = {Nikolay Shcherbina and Giuseppe Tomassini}, title = {Levi-flat extensions from a part of the boundary}, journal = {Comptes Rendus. Math\'ematique}, pages = {699--703}, publisher = {Elsevier}, volume = {337}, number = {11}, year = {2003}, doi = {10.1016/j.crma.2003.10.015}, language = {en}, }
Nikolay Shcherbina; Giuseppe Tomassini. Levi-flat extensions from a part of the boundary. Comptes Rendus. Mathématique, Volume 337 (2003) no. 11, pp. 699-703. doi : 10.1016/j.crma.2003.10.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.10.015/
[1] Envelopes of holomorphy of certain 2-spheres in , Amer. J. Math., Volume 105 (1983), pp. 975-1009
[2] On the envelopes of holomorphy of a 2-spheres in , J. Amer. Math. Soc., Volume 4 (1991), pp. 623-646
[3] Pseudoconvexity of rigid domains and foliations of hulls of graphs, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume XXI (1995), pp. 707-735
[4] Filling by holomorphic discs and its applications, London Math. Soc. Lecture Note Ser., Volume 151 (1991), pp. 45-67
[5] Two-dimensional spheres in the boundary of strictly pseudoconvex domains in , Izv. Akad. Nauk SSSR Ser. Mat., Volume 55 (1991), pp. 1194-1237
[6] On the polynomial hull of a graph, Indiana Univ. Math. J., Volume 42 (1993), pp. 477-503
[7] The Dirichlet problem for Levi flat graphs over unbounded domains, Internat. Math. Res. Notices (1999), pp. 111-151
Cited by Sources:
Comments - Policy