We study finite extension groups of lattices in Lie groups which have finitely many connected components. We show that every non-cocompact Fuchsian group (these are the non-cocompact lattices in ) has an extension group of finite index which is not isomorphic to a lattice in a Lie group with finitely many connected components. On the other hand we prove that these are, in an appropriate sense, the only lattices in Lie groups which have extension groups of this kind. We also show that an extension group of finite index of a lattice in a Lie group with finitely many connected components has only finitely many conjugacy classes of finite subgroups.
On étudie les extensions finies de réseaux dans les groupes de Lie n'ayant qu'un nombre fini de composantes connexes. Nous démontrons que tout groupe fuchsien (ce sont les réseaux non-cocompacts dans ) possède une extension finie qui n'est isomorphe à aucun réseau dans un groupe de Lie ayant un nombre fini de composantes connexes. D'autre part, nous démontrons que ces groupes sont les seuls, parmi les réseaux dans les groupes de Lie, pour lesquels il existe de telles extensions finies. Nous montrons aussi qu'une extension finie d'un réseau dans un groupe de Lie ayant un nombre fini de composantes connexes n'a qu'un nombre fini de classes de conjugaison de sous-groupes finis.
Accepted:
Published online:
Fritz Grunewald 1; Vladimir Platonov 2
@article{CRMATH_2004__338_4_271_0, author = {Fritz Grunewald and Vladimir Platonov}, title = {New properties of lattices in {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {271--276}, publisher = {Elsevier}, volume = {338}, number = {4}, year = {2004}, doi = {10.1016/j.crma.2003.12.021}, language = {en}, }
Fritz Grunewald; Vladimir Platonov. New properties of lattices in Lie groups. Comptes Rendus. Mathématique, Volume 338 (2004) no. 4, pp. 271-276. doi : 10.1016/j.crma.2003.12.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.12.021/
[1] , Comment. Math. Helv. (Collected Papers, vol. II), Volume 39, Springer-Verlag, 1964, pp. 111-164 (pp. 362–415)
[2] Geodesics and curvature in metric simplicial complexes (E. Ghys; A. Haefliger; A. Verjovsky, eds.), Group Theory From a Geometric Viewpoint, World Scientific, 1991, pp. 373-463
[3] Groups Acting on Graphs, Cambridge University Press, 1989
[4] Finiteness theorems for Fuchsian and Kleinian groups (E.W. Harvey, ed.), Discrete Groups and Automorphic Functions, Academic Press, 1977, pp. 199-255
[5] Rigidity results for groups with radical, cohomology of finite groups and arithmeticity problems, Duke Math. J., Volume 100 (1999), pp. 321-358
[6] Solvable arithmetic groups and arithmeticity problems, Int. J. Math., Volume 10 (1999), pp. 327-366
[7] The Nielsen realization problem, Ann. Math., Volume 117 (1983), pp. 235-265
[8] The theory of algebraic linear groups and periodic groups, Amer. Math. Soc. Transl., Volume 69 (1968), pp. 61-110
[9] Discrete subgroups isomorphic to lattices in Lie groups, Amer. J. Math., Volume 98 (1976), pp. 853-863
[10] Discrete Subgroups of Lie Groups, Ergeb. Math. Grenzgeb., vol. 68, Springer-Verlag, 1972
Cited by Sources:
Comments - Policy