Comptes Rendus
Partial Differential Equations
Asymptotic profiles of solutions to convection–diffusion equations
[Comportement asymptotique des solutions d'équations de convection–diffusion]
Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 369-374.

Le comportement asymptotique des solutions de masse nulle du problème de Cauchy pour l'équation de convection–diffusion u t -u xx +(|u| q ) x =0,u(x,0)=u 0 (x) est étudié lorsque q>1 et la donnée initiale u0 appartient à L 1 (,(1+|x|)dx) et satisfait u 0 (x)dx=0. Nous donnons des conditions sur l'amplitude et la forme de la donnée initiale u0 et sur l'exposant q>1 sous lesquelles le comportement asymptotique des solutions est décrit par la dérivée première du noyau de Gauss–Weierstrass, ou par une solution auto-similaire de l'équation, ou par une N-onde hyperbolique.

The large time behavior of zero-mass solutions to the Cauchy problem for the convection–diffusion equation u t -u xx +(|u| q ) x =0,u(x,0)=u 0 (x) is studied when q>1 and the initial datum u0 belongs to L 1 (,(1+|x|)dx) and satisfies u 0 (x)dx=0. We provide conditions on the size and shape of the initial datum u0 as well as on the exponent q>1 such that the large time asymptotics of solutions is given either by the derivative of the Gauss–Weierstrass kernel, or by a self-similar solution of the equation, or by hyperbolic N-waves.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.01.001
Saı̈d Benachour 1 ; Grzegorz Karch 2 ; Philippe Laurençot 3

1 Institut Elie Cartan-Nancy, Université Henri Poincaré, BP 239, 54506 Vandœuvre lès Nancy cedex, France
2 Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland, and Institute of Mathematics, Polish Academy of Sciences, Warsaw (2002-2003), Poland
3 Mathématiques pour l'industrie et la physique, CNRS UMR 5640, Université Paul Sabatier-Toulouse 3, 118, route de Narbonne, 31062 Toulouse cedex 4, France
@article{CRMATH_2004__338_5_369_0,
     author = {Sa{\i}\ensuremath{\ddot{}}d Benachour and Grzegorz Karch and Philippe Lauren\c{c}ot},
     title = {Asymptotic profiles of solutions to convection{\textendash}diffusion equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {369--374},
     publisher = {Elsevier},
     volume = {338},
     number = {5},
     year = {2004},
     doi = {10.1016/j.crma.2004.01.001},
     language = {en},
}
TY  - JOUR
AU  - Saı̈d Benachour
AU  - Grzegorz Karch
AU  - Philippe Laurençot
TI  - Asymptotic profiles of solutions to convection–diffusion equations
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 369
EP  - 374
VL  - 338
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2004.01.001
LA  - en
ID  - CRMATH_2004__338_5_369_0
ER  - 
%0 Journal Article
%A Saı̈d Benachour
%A Grzegorz Karch
%A Philippe Laurençot
%T Asymptotic profiles of solutions to convection–diffusion equations
%J Comptes Rendus. Mathématique
%D 2004
%P 369-374
%V 338
%N 5
%I Elsevier
%R 10.1016/j.crma.2004.01.001
%G en
%F CRMATH_2004__338_5_369_0
Saı̈d Benachour; Grzegorz Karch; Philippe Laurençot. Asymptotic profiles of solutions to convection–diffusion equations. Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 369-374. doi : 10.1016/j.crma.2004.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.01.001/

[1] S. Benachour, G. Karch, Ph. Laurençot, Asymptotic profiles of solutions to viscous Hamilton–Jacobi equations, submitted for publication

[2] S. Benachour, H. Koch, Ph. Laurençot, Very singular solutions to a nonlinear parabolic equation with absorption. II – Uniqueness, Proc. Roy. Soc. Edinburgh Sect. A, in press

[3] S. Benachour; Ph. Laurençot Global solutions to viscous Hamilton–Jacobi equations with irregular initial data, Comm. Partial Differential Equations, Volume 24 (1999), pp. 1999-2021

[4] S. Benachour; Ph. Laurençot Very singular solutions to a nonlinear parabolic equation with absorption I. Existence, Proc. Roy. Soc. Edinburgh Sect. A, Volume 131 (2001), pp. 27-44

[5] M. Ben-Artzi; H. Koch Decay of mass for a semilinear parabolic equation, Comm. Partial Differential Equations, Volume 24 (1999), pp. 869-881

[6] M. Ben-Artzi; Ph. Souplet; F.B. Weissler The local theory for viscous Hamilton–Jacobi equations in Lebesgue spaces, J. Math. Pures Appl., Volume 81 (2002), pp. 343-378

[7] M. Escobedo; J.L. Vázquez; E. Zuazua Asymptotic behavior and source-type solutions for a diffusion–convection equation, Arch. Rational Mech. Anal., Volume 124 (1993), pp. 43-65

[8] M. Escobedo; E. Zuazua Large time behavior for convection–diffusion equations in N , J. Funct. Anal., Volume 100 (1991), pp. 119-161

[9] E. Feireisl; Ph. Laurençot The L1-stability of constant states of degenerate convection–diffusion equations, Asymptotic Anal., Volume 19 (1999), pp. 267-288

[10] B. Gilding; M. Guedda; R. Kersner The Cauchy problem for utu+|∇u|q, J. Math. Anal. Appl., Volume 284 (2003), pp. 733-755

[11] G. Karch; M.E. Schonbek On zero mass solutions of viscous conservation laws, Comm. Partial Differential Equations, Volume 27 (2002), pp. 2071-2100

[12] Y.J. Kim, An Oleinik type estimate for a convection–diffusion equation and convergence to N-waves, J. Differential Equations, in press

[13] Ph. Laurençot; Ph. Souplet On the growth of mass for a viscous Hamilton–Jacobi equation, J. Anal. Math., Volume 89 (2003), pp. 367-383

[14] J. Smoller Shock Waves and Reaction–Diffusion Equations, Grundlehren Math. Wiss., vol. 258, Springer-Verlag, New York, 1983

Cité par Sources :

Commentaires - Politique