[Une formule de Weyl pour le spectre cuspidal de SLn]
Let Γ be a principal congruence subgroup of
Soit Γ un sous-groupe de congruence principal de
Accepté le :
Publié le :
Werner Müller 1
@article{CRMATH_2004__338_5_347_0, author = {Werner M\"uller}, title = {Weyl's law for the cuspidal spectrum of {SL\protect\textsubscript{\protect\emph{n}}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {347--352}, publisher = {Elsevier}, volume = {338}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2004.01.003}, language = {en}, }
Werner Müller. Weyl's law for the cuspidal spectrum of SLn. Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 347-352. doi : 10.1016/j.crma.2004.01.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.01.003/
[1] A trace formula for reductive groups I: terms associated to classes in
[2] The trace formula in invariant form, Ann. Math., Volume 114 (1981), pp. 1-74
[3] Intertwining operators and residues. I. Weighted characters, J. Funct. Anal., Volume 84 (1989), pp. 19-84
[4] On a family of distributions obtained from orbits, Canad. J. Math., Volume 38 (1986), pp. 179-214
[5] On the cuspidal spectrum for finite volume symmetric spaces, J. Differential Geom., Volume 17 (1982), pp. 239-253
[6] An Introduction to Probability Theory and its Applications, vol. II, Wiley, New York, 1971
[7] On the existence and temperedness of cusp forms for
[8] Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup. (4), Volume 22 (1989), pp. 605-674
[9] Eigenvalue estimates for locally symmetric spaces of finite volume, Symposium Partial Differential Equations, Holzhau, 1988, Teubner-Texte Math., vol. 112, Teubner, Leipzig, 1989, pp. 179-196
[10] On the spectral side of the Arthur trace formula, Geom. Funct. Anal., Volume 12 (2002), pp. 669-722
[11] W. Müller, B. Speh, With appendix by E. Lapid, Absolute convergence of the spectral side of the Arthur trace formula for GLn, Geom. Funct. Anal., in press
[12] On cusp forms (D. Hejhal et al., eds.), The Selberg Trace Formula and Related Topics, Contemp. Math., vol. 53, Amer. Math. Soc, 1984, pp. 393-407
[13] Harmonic analysis, Collected Papers, vol. I, Springer-Verlag, Berlin, 1989, pp. 626-674
- Geometric estimates for the trace formula, Annals of Global Analysis and Geometry, Volume 34 (2008) no. 3, p. 233 | DOI:10.1007/s10455-008-9105-0
- Counting the discrete series for GL(n), Bulletin of the London Mathematical Society, Volume 39 (2007) no. 1, p. 133 | DOI:10.1112/blms/bdl024
Cité par 2 documents. Sources : Crossref
Commentaires - Politique