Let 1→N→G→G/N→1 be a short exact sequence of profinite groups, and let p be a prime number. We prove that if G is of finite cohomological p-dimension n:=cdp(G)<∞ and if the order of is finite for k:=cdp(N), the virtual cohomological p-dimension of G/N equals n−k.
Soit 1→N→G→G/N→1 une suite exacte courte de groupes profinis, et soit p un nombre premier. Nous montrons que si G a p-dimension cohomologique finie n:=cdp(G) et si l'ordre du groupe est fini pour k:=cdp(N), la p-dimension cohomologique virtuelle de G/N est égale à n−k.
Accepted:
Published online:
Thomas Weigel 1; Pavel Zalesskii 2
@article{CRMATH_2004__338_5_353_0, author = {Thomas Weigel and Pavel Zalesskii}, title = {Profinite groups of finite cohomological dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {353--358}, publisher = {Elsevier}, volume = {338}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2003.12.022}, language = {en}, }
Thomas Weigel; Pavel Zalesskii. Profinite groups of finite cohomological dimension. Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 353-358. doi : 10.1016/j.crma.2003.12.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.12.022/
[1] Representations and Cohomology, II. Cohomology of Groups and Modules, Cambridge Stud. Adv. Math., vol. 31, Cambridge University Press, 1991
[2] On groups of cohomological dimension 2, topol. and algebra, Proc. Colloq. in Honor of B. Eckmann, Zürich, 1977, 1978, pp. 55-62
[3] Pseudocompact algebras, profinite groups and class formations, J. Algebra, Volume 4 (1966), pp. 442-470
[4] A. Engler, D. Haran, D. Kochloukova, P.A. Zalesskii, Normal subgroups of profinite groups of finite cohomological dimension, J. London Math. Soc., in press
[5] W.N. Herford, P.A. Zalesskii, Virtually free pro-p groups, ANUM preprint No. 132/01, University of Technology, Vienna, 2001
[6] Cohomology of Number Fields, Grundlehren Math. Wiss., vol. 323, Springer, Berlin, 1999
[7] Cohomologie Galoisienne, Lecture Notes in Math., Springer-Verlag, Berlin, 1994
[8] Cohomology of p-adic analytic groups (M. du Sautoy; D. Segal; A. Shalev, eds.), New Horizons in pro-p-Groups, Progr. Math., vol. 184, Birkhäuser, 2000, pp. 349-410
Cited by Sources:
Comments - Policy