We extend the classical version of Kato's inequality in order to allow functions u∈L1loc such that Δu is a Radon measure. This inequality has been recently applied by Brezis, Marcus, and Ponce to study the existence of solutions of the nonlinear equation −Δu+g(u)=μ, where μ is a measure and is a nondecreasing continuous function.
Nous étendons l'inégalité de Kato classique à des fonctions u∈L1loc telles que Δu est une mesure de Radon. Cette inégalité a été récemment utilisée par Brezis, Marcus et Ponce pour étudier l'existence de solutions de l'équation elliptique non linéaire −Δu+g(u)=μ, où μ est une mesure et est une fonction croissante et continue.
Accepted:
Published online:
Haı̈m Brezis 1, 2; Augusto C. Ponce 1, 2
@article{CRMATH_2004__338_8_599_0, author = {Ha{\i}\ensuremath{\ddot{}}m Brezis and Augusto C. Ponce}, title = {Kato's inequality when {\ensuremath{\Delta}\protect\emph{u}} is a measure}, journal = {Comptes Rendus. Math\'ematique}, pages = {599--604}, publisher = {Elsevier}, volume = {338}, number = {8}, year = {2004}, doi = {10.1016/j.crma.2003.12.032}, language = {en}, }
Haı̈m Brezis; Augusto C. Ponce. Kato's inequality when Δu is a measure. Comptes Rendus. Mathématique, Volume 338 (2004) no. 8, pp. 599-604. doi : 10.1016/j.crma.2003.12.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.12.032/
[1] Une propriété d'invariance des ensembles absorbants par perturbation d'un opérateur elliptique, Comm. Partial Differential Equations, Volume 4 (1979), pp. 321-337
[2] Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 13 (1996), pp. 539-551
[3] Blow up for ut−Δu=g(u) revisited, Adv. Differential Equations, Volume 1 (1996), pp. 73-90
[4] Remarks on the strong maximum principle, Differential Integral Equations, Volume 16 (2003), pp. 1-12
[5] H. Brezis, M. Marcus, A.C. Ponce, Nonlinear elliptic equations with measures revisited, in preparation
[6] L. Dupaigne, A.C. Ponce, Singularities of positive supersolutions in elliptic PDEs, Selecta Math. (N.S.), in press
[7] On the closable part of pre-Dirichlet forms and the fine supports of underlying measures, Osaka Math. J., Volume 28 (1991), pp. 517-535
[8] Schrödinger operators with singular potentials, Israel J. Math., Volume 13 (1972), pp. 135-148
Cited by Sources:
Comments - Policy