[Estimations de valeurs propres pour l'opérateur de Dirac et 1-formes harmoniques de longueur constante]
Nous démontrons que toute valeur propre λ de l'opérateur de Dirac d'une variété spinorielle compacte, de dimension n, qui admet une 1-forme harmonique non-triviale de longueur constante vérifie l'inégalité . Dans le cas limite le revêtement universel de la variété est isométrique à où N est une variété admettant des spineurs de Killing.
We prove that on a compact n-dimensional spin manifold admitting a non-trivial harmonic 1-form of constant length, every eigenvalue λ of the Dirac operator satisfies the inequality . In the limiting case the universal cover of the manifold is isometric to where N is a manifold admitting Killing spinors.
Accepté le :
Publié le :
Andrei Moroianu 1 ; Liviu Ornea 2
@article{CRMATH_2004__338_7_561_0, author = {Andrei Moroianu and Liviu Ornea}, title = {Eigenvalue estimates for the {Dirac} operator and harmonic 1-forms of constant length}, journal = {Comptes Rendus. Math\'ematique}, pages = {561--564}, publisher = {Elsevier}, volume = {338}, number = {7}, year = {2004}, doi = {10.1016/j.crma.2004.01.030}, language = {en}, }
TY - JOUR AU - Andrei Moroianu AU - Liviu Ornea TI - Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length JO - Comptes Rendus. Mathématique PY - 2004 SP - 561 EP - 564 VL - 338 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2004.01.030 LA - en ID - CRMATH_2004__338_7_561_0 ER -
Andrei Moroianu; Liviu Ornea. Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length. Comptes Rendus. Mathématique, Volume 338 (2004) no. 7, pp. 561-564. doi : 10.1016/j.crma.2004.01.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.01.030/
[1] An estimate for the first eigenvalue of the Dirac operator on compact Riemannian spin manifold admitting parallel one-form, J. Geom. Phys., Volume 28 (1998), pp. 263-270
[2] Real Killing spinors and holonomy, Comm. Math. Phys., Volume 154 (1993), pp. 509-521
[3] The first Dirac eigenvalue on manifolds with positive scalar curvature | arXiv
[4] Der erste Eigenwert des Dirac Operators eines kompakten Riemmanschen Mannifaltigkeit nichtnegativer Skalarkrümung, Math. Nachr., Volume 97 (1980), pp. 117-146
[5] O. Hijazi, Opérateurs de Dirac sur les variétés Riemanniennes. Minoration des valeurs propres, Thèse de 3ème cycle, École Polytechnique, 1984
[6] An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Global Anal. Geom., Volume 3 (1986), pp. 291-325
[7] The first eigenvalue of the Dirac operator on Kähler manifolds, J. Geom. Phys., Volume 7 (1990), pp. 449-468
[8] Eigenvalue estimates for the Dirac operator on quaternionic Kähler manifolds, Math. Z., Volume 230 (1999), pp. 727-751
Cité par Sources :
Commentaires - Politique