Comptes Rendus
Differential Geometry
Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length
[Estimations de valeurs propres pour l'opérateur de Dirac et 1-formes harmoniques de longueur constante]
Comptes Rendus. Mathématique, Volume 338 (2004) no. 7, pp. 561-564.

Nous démontrons que toute valeur propre λ de l'opérateur de Dirac d'une variété spinorielle compacte, de dimension n, qui admet une 1-forme harmonique non-triviale de longueur constante vérifie l'inégalité λ2n-14(n-2)infMScal. Dans le cas limite le revêtement universel de la variété est isométrique à ×NN est une variété admettant des spineurs de Killing.

We prove that on a compact n-dimensional spin manifold admitting a non-trivial harmonic 1-form of constant length, every eigenvalue λ of the Dirac operator satisfies the inequality λ2n-14(n-2)infMScal. In the limiting case the universal cover of the manifold is isometric to ×N where N is a manifold admitting Killing spinors.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.01.030

Andrei Moroianu 1 ; Liviu Ornea 2

1 Centre de mathémathiques, École polytechnique, 91128 Palaiseau cedex, France
2 University of Bucharest, Faculty of Mathematics, 14 Academiei str., 70109 Bucharest, Romania
@article{CRMATH_2004__338_7_561_0,
     author = {Andrei Moroianu and Liviu Ornea},
     title = {Eigenvalue estimates for the {Dirac} operator and harmonic 1-forms of constant length},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {561--564},
     publisher = {Elsevier},
     volume = {338},
     number = {7},
     year = {2004},
     doi = {10.1016/j.crma.2004.01.030},
     language = {en},
}
TY  - JOUR
AU  - Andrei Moroianu
AU  - Liviu Ornea
TI  - Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 561
EP  - 564
VL  - 338
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2004.01.030
LA  - en
ID  - CRMATH_2004__338_7_561_0
ER  - 
%0 Journal Article
%A Andrei Moroianu
%A Liviu Ornea
%T Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length
%J Comptes Rendus. Mathématique
%D 2004
%P 561-564
%V 338
%N 7
%I Elsevier
%R 10.1016/j.crma.2004.01.030
%G en
%F CRMATH_2004__338_7_561_0
Andrei Moroianu; Liviu Ornea. Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length. Comptes Rendus. Mathématique, Volume 338 (2004) no. 7, pp. 561-564. doi : 10.1016/j.crma.2004.01.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.01.030/

[1] B. Alexandrov; G. Grantcharov; S. Ivanov An estimate for the first eigenvalue of the Dirac operator on compact Riemannian spin manifold admitting parallel one-form, J. Geom. Phys., Volume 28 (1998), pp. 263-270

[2] C. Bär Real Killing spinors and holonomy, Comm. Math. Phys., Volume 154 (1993), pp. 509-521

[3] C. Bär; M. Dahl The first Dirac eigenvalue on manifolds with positive scalar curvature | arXiv

[4] T. Friedrich Der erste Eigenwert des Dirac Operators eines kompakten Riemmanschen Mannifaltigkeit nichtnegativer Skalarkrümung, Math. Nachr., Volume 97 (1980), pp. 117-146

[5] O. Hijazi, Opérateurs de Dirac sur les variétés Riemanniennes. Minoration des valeurs propres, Thèse de 3ème cycle, École Polytechnique, 1984

[6] K.-D. Kirchberg An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Global Anal. Geom., Volume 3 (1986), pp. 291-325

[7] K.-D. Kirchberg The first eigenvalue of the Dirac operator on Kähler manifolds, J. Geom. Phys., Volume 7 (1990), pp. 449-468

[8] W. Kramer; U. Semmelmann; G. Weingart Eigenvalue estimates for the Dirac operator on quaternionic Kähler manifolds, Math. Z., Volume 230 (1999), pp. 727-751

  • Yongfa Chen Eigenvalue estimate for the Dirac–Witten operator on locally reducible Riemannian manifolds, Letters in Mathematical Physics, Volume 113 (2023) no. 3 | DOI:10.1007/s11005-023-01691-x
  • Seoung Dal Jung; Ken Richardson Basic Dolbeault cohomology and Weitzenböck formulas on transversely Kähler foliations, Journal of Topology and Analysis, Volume 13 (2021) no. 03, p. 673 | DOI:10.1142/s1793525320500260
  • Yongfa Chen Lower bounds for the eigenvalue estimates of the submanifold Dirac operator, Mathematische Zeitschrift, Volume 299 (2021) no. 3-4, p. 2443 | DOI:10.1007/s00209-021-02752-4
  • Serhan EKER Eigenvalue Estimates Using Harmonic 1−Form of Constant Length for The 𝑺𝒑𝒊𝒏𝒄 Dirac Operator, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Volume 10 (2020) no. 2, p. 1213 | DOI:10.21597/jist.644583
  • Yongfa Chen The Dirac operator on locally reducible Riemannian manifolds, Journal of Geometry and Physics, Volume 139 (2019), p. 17 | DOI:10.1016/j.geomphys.2019.01.004
  • Yongfa Chen The Dirac operator on manifold admitting parallel one-form, Journal of Geometry and Physics, Volume 117 (2017), p. 214 | DOI:10.1016/j.geomphys.2017.04.001
  • Yongfa Chen Twistor spinors and quasi-twistor spinors, Chinese Annals of Mathematics, Series B, Volume 37 (2016) no. 3, p. 451 | DOI:10.1007/s11401-016-0961-9
  • Vladimir Slesar On the Dirac spectrum of Riemannian foliations admitting a basic parallel 1-form, Journal of Geometry and Physics, Volume 62 (2012) no. 4, p. 804 | DOI:10.1016/j.geomphys.2012.01.004
  • Bogdan Alexandrov The first eigenvalue of the Dirac operator on locally reducible Riemannian manifolds, Journal of Geometry and Physics, Volume 57 (2007) no. 2, p. 467 | DOI:10.1016/j.geomphys.2006.04.005
  • Seoung Dal Jung Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form, Journal of Geometry and Physics, Volume 57 (2007) no. 4, p. 1239 | DOI:10.1016/j.geomphys.2006.04.008

Cité par 10 documents. Sources : Crossref

Commentaires - Politique