We establish compactness of solutions to the Yamabe problem on any smooth compact connected Riemannian manifold (not conformally diffeomorphic to standard spheres) of dimension n⩽7 as well as on any manifold of dimension n⩾8 under some additional hypothesis.
On établit la compacité des solutions du problème de Yamabe sur toute variété riemannienne, régulière compacte connexe (non conformément équivalente à la sphère standard) de dimension n⩽7. Le même résultat est valable en dimension n⩾8 sous une hypothèse supplémentaire.
Accepted:
Published online:
YanYan Li 1; Lei Zhang 2
@article{CRMATH_2004__338_9_693_0, author = {YanYan Li and Lei Zhang}, title = {Compactness of solutions to the {Yamabe} problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {693--695}, publisher = {Elsevier}, volume = {338}, number = {9}, year = {2004}, doi = {10.1016/j.crma.2004.02.018}, language = {en}, }
YanYan Li; Lei Zhang. Compactness of solutions to the Yamabe problem. Comptes Rendus. Mathématique, Volume 338 (2004) no. 9, pp. 693-695. doi : 10.1016/j.crma.2004.02.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.02.018/
[1] Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., Volume 55 (1976), pp. 269-296
[2] Another proof of the Yamabe conjecture for locally conformally flat manifolds, Nonlinear Anal., Volume 20 (1993), pp. 1261-1278
[3] Non-linear elliptic equations on Riemannian manifolds with the Sobolev critical exponent, Topics in Geometry, Progr. Nonlinear Differential Equations Appl., vol. 20, Birkhäuser Boston, Boston, MA, 1996, pp. 1-100
[4] O. Druet, From one bubble to several bubbles. The low-dimensional case, J. Differential Geometry, in press
[5] Y.Y. Li, L. Zhang, A Harnack type inequality for the Yamabe equation in low dimensions, Calc. Var. Partial Differential Equations, in press
[6] Y.Y. Li, L. Zhang, Compactness of solutions to the Yamabe problem, in preparation
[7] Yamabe type equations on three-dimensional Riemannian manifolds, Commun. Contemp. Math., Volume 1 (1999), pp. 1-50
[8] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984), pp. 479-495
[9] On the number of constant scalar curvature metrics in a conformal class (H.B. Lawson; K. Tenenblat, eds.), Differential Geometry: A Symposium in Honor of Manfredo Do Carmo, Wiley, 1991, pp. 311-320
[10] Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Cl. Sci., Volume 22 (1968) no. 3, pp. 265-274
[11] On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., Volume 12 (1960), pp. 21-37
Cited by Sources:
Comments - Policy