Comptes Rendus
Partial Differential Equations
General entropy equations for structured population models and scattering
Comptes Rendus. Mathématique, Volume 338 (2004) no. 9, pp. 697-702.

We consider several structured population models (age structured, size structured, maturity structured) and the general scattering equation. These models are not conservation laws, nevertheless, we show that they admit a common relative entropy structure which uses the first eigenelements of the problem. In case of scattering, it is more general than the usual ‘detailed balance principle’. Three types of consequences are deduced from this entropy structure: a priori bounds, large time convergence to the steady state and in some cases, exponential rates of convergence.

Nous considérons divers modèles de populations structurées (en âge, en taille ou en maturité) et aussi l'équation de scattering. Ces modèles ne sont pas conservatifs, néammoins nous montrons qu'ils vérifient tous une structure d'entropie relative commune qui utilise les premiers éléments propres du problème et qui, dans le cas du scattering, généralise le « principe d'équilibre en détail » habituel. Trois types de conséquences découlent de cette structure entropique : des estimations a priori, la convergence en temps grand vers un état stationnaire et parfois des taux exponentiels de convergence.

Published online:
DOI: 10.1016/j.crma.2004.03.006

Philippe Michel 1, 2; Stéphane Mischler 1; Benoı̂t Perthame 2

1 CEREMADE, Université Paris 9 Dauphine, pl. de Lattre de Tassigny, 75775 Paris cedex 16, France
2 Département de mathématiques et applications, UMR 8553, École normale supérieure, 45, rue d'Ulm, 75230 Paris cedex 05, France
     author = {Philippe Michel and St\'ephane Mischler and Beno{\i}̂t Perthame},
     title = {General entropy equations for structured population models and scattering},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {697--702},
     publisher = {Elsevier},
     volume = {338},
     number = {9},
     year = {2004},
     doi = {10.1016/j.crma.2004.03.006},
     language = {en},
AU  - Philippe Michel
AU  - Stéphane Mischler
AU  - Benoı̂t Perthame
TI  - General entropy equations for structured population models and scattering
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 697
EP  - 702
VL  - 338
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2004.03.006
LA  - en
ID  - CRMATH_2004__338_9_697_0
ER  - 
%0 Journal Article
%A Philippe Michel
%A Stéphane Mischler
%A Benoı̂t Perthame
%T General entropy equations for structured population models and scattering
%J Comptes Rendus. Mathématique
%D 2004
%P 697-702
%V 338
%N 9
%I Elsevier
%R 10.1016/j.crma.2004.03.006
%G en
%F CRMATH_2004__338_9_697_0
Philippe Michel; Stéphane Mischler; Benoı̂t Perthame. General entropy equations for structured population models and scattering. Comptes Rendus. Mathématique, Volume 338 (2004) no. 9, pp. 697-702. doi : 10.1016/j.crma.2004.03.006.

[1] M. Adimy; L. Pujo-Menjouet Asymptotic behavior of a singular transport equation modelling cell division, DCDS(B), Volume 3 (2003) no. 3, pp. 439-456

[2] O. Arino A survey of structured cell population dynamics, Acta Biotheor., Volume 43 (1995), pp. 3-25

[3] B. Basse; B.C. Bagulay; E.S. Marshall; W.R. Joseph; B. van Brunt; G. Wake; D.J.N. Wall A mathematical model for analysis of the cell cycle in cell lines derived from human tumors, J. Math. Biol. (2003)

[4] F. Chalub, P. Markowich, B. Perthame, C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monat. Math., in press

[5] G. Chiorino; J.A.J. Metz; D. Tomasoni; P. Ubezio Desynchronization rate in cell populations: mathematical modeling and experimental data, J. Theor. Biol., Volume 208 (2001), pp. 185-199

[6] M.J. Càceres; J.A. Carillo; T. Goudon Equilibrium rate for the linear inhomogeneous relaxation time Boltzmann equation for charged particles, Comm. Partial Differential Equations, Volume 28 (2003) no. 1–2, pp. 969-989

[7] R. Dautray; J.-L. Lions Mathematical Analysis and Numerical Methods for Sciences and Technology, Springer, 1990

[8] P. Degond; T. Goudon; F. Poupaud Diffusion approximation for non homogeneous and non microreversible processes, Indiana Univ. Math. J., Volume 49 (2000), pp. 1175-1198

[9] L. Desvillettes; C. Villani Entropic methods for the study of the longtime behavior of kinetic equations, The Sixteenth International Conference on Transport Theory, Part I (Atlanta, GA, 1999) (Transport Theory Statist. Phys.), Volume 30 (2001) no. 2–3, pp. 155-168

[10] N. Fournier, S. Mischler, Trend to equilibrium for discrete coagulation equations with strong fragmentation and without balance condition, Preprint, 2003

[11] W. Huyer On periodic cohort solutions of a size-structured population model, J. Math. Biol., Volume 35 (1997) no. 8, pp. 908-934

[12] J.L. Lebowitz; S.I. Rubinow A theory for the age and generation time distribution of a microbial population, J. Math. Biol., Volume 1 (1977), pp. 17-36

[13] B. Lods, G. Toscani, The dissipative linear Boltzmann equation for hard spheres, Appl. Math. Lett., in press

[14] A. Mellet Diffusion limit of a non linear kinetic model without the detailed balance principle, Monat. Math., Volume 134 (2002), pp. 305-329

[15] J.A.J. Metz; O. Diekmann The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomath., vol. 68, Springer-Verlag, 1986

[16] P. Michel, S. Mischler, B. Perthame, The entropy structure of models of structured population dynamics, in preparation

[17] S. Mischler; B. Perthame; L. Ryzhik Stability in a nonlinear population maturation model, Math. Models Meth. Appl. Sci., Volume 12 (2002) no. 12, pp. 1751-1772

[18] B. Perthame, L. Ryzhik, Exponential decay for the fragmentation or cell-division equation, Preprint DMA, 2003

[19] M. Rotenberg Transport theory for growing cell populations, J. Theor. Biol., Volume 103 (1983), pp. 181-199

[20] C. Villani Topics in Optimal Transportation, Graduate Stud. Math., vol. 58, American Mathematical Society, Providence, RI, 2003

[21] C. Villani, A review of mathematical topics in collisional kinetic theory, in: S. Friedlander, D. Serre (Eds.), Handbook of Mathematical Fluid Dynamics Tome I, Chapter 2

Cited by Sources:

Comments - Policy