We propose new implicit schemes to solve the homogeneous and isotropic Fokker–Planck–Landau equation. These schemes have conservation and entropy properties. Moreover, they allow for large time steps (of the order of the physical relaxation time), contrary to usual explicit schemes. We use in particular fast linear Krylov solvers like the GMRES method. These schemes allow an important gain in terms of CPU time, with the same accuracy as explicit schemes. This work is a first step to the development of fast implicit schemes to solve more realistic kinetic models.
Nous proposons de nouveaux schémas implicites pour résoudre l'équation de Fokker–Planck–Landau homogène isotrope. Ces schémas possèdent des propriétés de conservation et d'entropie. Ils permettent l'utilisation de pas de temps de l'ordre du temps de relaxation physique, contrairement aux schémas explicites usuels. Nous utilisons en particulier des solveurs linéaires rapides de type Krylov comme la méthode GMRES. Ces schémas offrent un gain important en temps CPU avec une précision comparable à celle des schémas explicites. Ce travail constitue une première étape en vue du développement de schémas implicites rapides pour résoudre des équations cinétiques plus réalistes.
Accepted:
Published online:
Mohammed Lemou 1; Luc Mieussens 1
@article{CRMATH_2004__338_10_809_0, author = {Mohammed Lemou and Luc Mieussens}, title = {Fast implicit schemes for the {Fokker{\textendash}Planck{\textendash}Landau} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {809--814}, publisher = {Elsevier}, volume = {338}, number = {10}, year = {2004}, doi = {10.1016/j.crma.2004.03.010}, language = {en}, }
Mohammed Lemou; Luc Mieussens. Fast implicit schemes for the Fokker–Planck–Landau equation. Comptes Rendus. Mathématique, Volume 338 (2004) no. 10, pp. 809-814. doi : 10.1016/j.crma.2004.03.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.03.010/
[1] Wavelet approximation of a collision operator in kinetic theory, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 353-358
[2] Numerical analysis of the isotropic Fokker–Planck–Landau equation, J. Comput. Phys., Volume 179 (2002) no. 1, pp. 43-67
[3] An implicit energy-conservative 2D Fokker–Planck algorithm. Jacobian free Newton–Krylow solver, J. Comput. Phys., Volume 157 (2000) no. 2, pp. 654-682
[4] Implicit and conservative difference scheme for the Fokker–Planck equation, J. Comput. Phys., Volume 112 (1994) no. 2, pp. 291-297
[5] Exact solutions of the Fokker–Planck equation, C. R. Acad. Sci., Sér. I, Volume 319 (1994), pp. 579-583
[6] Multipole expansions for the Fokker–Planck–Landau operator, Numer. Math., Volume 78 (1998) no. 4, pp. 597-618
[7] M. Lemou, L. Mieussens, Fast implicit schemes for the homogeneous Fokker–Planck–Landau equation, in preparation
[8] Iterative methods for sparse linear systems, 2000 http://www-users.cs.umn.edu/~saad/books.html
Cited by Sources:
Comments - Policy