Dans cette Note, nous étendons un résultat de couplage pour des variables réelles au cas des variables à valeurs dans un espace polonais. Ce résultat est une conséquence d'une version conditionnelle du théorème de Kantorovitch et Rubinstein.
In this Note, we generalize a coupling result for real variables to the case of variables with values in some Polish space. This result follows from a conditional version of the Kantorovitch and Rubinstein theorem.
Accepté le :
Publié le :
Jérôme Dedecker 1 ; Clémentine Prieur 2
@article{CRMATH_2004__338_10_805_0, author = {J\'er\^ome Dedecker and Cl\'ementine Prieur}, title = {Couplage pour la distance minimale}, journal = {Comptes Rendus. Math\'ematique}, pages = {805--808}, publisher = {Elsevier}, volume = {338}, number = {10}, year = {2004}, doi = {10.1016/j.crma.2004.03.015}, language = {fr}, }
Jérôme Dedecker; Clémentine Prieur. Couplage pour la distance minimale. Comptes Rendus. Mathématique, Volume 338 (2004) no. 10, pp. 805-808. doi : 10.1016/j.crma.2004.03.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.03.015/
[1] Coupling for τ-dependent sequences and applications www.ccr.jussieu.fr/lsta/prepublications.html (Prépublication, 2003.)
[2] New dependence coefficients. Examples and applications to statistics www.ccr.jussieu.fr/lsta/prepublications.html (Prépublication, 2003.)
[3] A note on a theorem of Berkes and Philipp, Z. Wahrsch. Verw. Gebiete, Volume 62 (1983), pp. 39-42
[4] Sur le théorème de Kantorovitch–Rubinstein dans les espaces polonais, Séminaire de Probabilités XV, Lecture Notes in Math., vol. 850, Springer, 1981, pp. 6-10
[5] On the invariance principle for sums of identically distributed random variables, J. Multivariate Anal., Volume 8 (1978), pp. 487-517
[6] On the coupling of dependent random variables and applications, Empirical Process Techniques for Dependent Data, Birkhäuser, 2002, pp. 171-193
[7] Sur le théorème de Berry–Esseen pour les suites faiblement dépendantes, Probab. Theory Related Fields, Volume 104 (1996), pp. 255-282
[8] On a representation of random variables, Theory Probab. Appl., Volume 21 (1976), pp. 628-632
- Bootstrapping sample quantiles of discrete data, Annals of the Institute of Statistical Mathematics, Volume 68 (2016) no. 3, pp. 491-539 | DOI:10.1007/s10463-015-0503-3 | Zbl:1432.62125
- Dependent wild bootstrap for degenerate
- and -statistics, Journal of Multivariate Analysis, Volume 117 (2013), pp. 257-280 | DOI:10.1016/j.jmva.2013.03.003 | Zbl:1279.62102 - Degenerate
- and -statistics under weak dependence: asymptotic theory and bootstrap consistency, Bernoulli, Volume 18 (2012) no. 2, pp. 552-585 | DOI:10.3150/11-bej354 | Zbl:1238.62059 - Characteristic function-based hypothesis tests under weak dependence, Journal of Multivariate Analysis, Volume 108 (2012), pp. 67-89 | DOI:10.1016/j.jmva.2012.02.003 | Zbl:1238.62054
- Parametrized Kantorovich-Rubinštein theorem and application to the coupling of random variables, Dependence in Probability and Statistics, Volume 187 (2006), p. 105 | DOI:10.1007/0-387-36062-x_5
- New dependence coefficients. Examples and applications to statistics, Probability Theory and Related Fields, Volume 132 (2005) no. 2, pp. 203-236 | DOI:10.1007/s00440-004-0394-3 | Zbl:1061.62058
Cité par 6 documents. Sources : Crossref, zbMATH
Commentaires - Politique