[Polynômes orthogonaux et la condition de Szegő généralisée.]
Les propriétés asymptotiques des polynômes orthogonaux de la classe de Szegő sont très bien étudiées. Nous obtenons les asymptotiques des polynômes orthogonaux appartenant à une classe considérablement plus large. Ensuite, nous appliquons cette information à l'étude du comportement spectral de ces derniers.
Asymptotical properties of orthogonal polynomials from the so-called Szegő class are very well-studied. We obtain asymptotics of orthogonal polynomials from a considerably larger class and we apply this information to the study of their spectral behavior.
Accepté le :
Publié le :
Sergey Denisov 1 ; Stanislas Kupin 2
@article{CRMATH_2004__339_4_241_0, author = {Sergey Denisov and Stanislas Kupin}, title = {Orthogonal polynomials and a generalized {Szeg\H{o}} condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {241--244}, publisher = {Elsevier}, volume = {339}, number = {4}, year = {2004}, doi = {10.1016/j.crma.2004.06.004}, language = {en}, }
Sergey Denisov; Stanislas Kupin. Orthogonal polynomials and a generalized Szegő condition. Comptes Rendus. Mathématique, Volume 339 (2004) no. 4, pp. 241-244. doi : 10.1016/j.crma.2004.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.004/
[1] Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra Appl., Volume 362 (2003), pp. 29-56
[2] Necessary and sufficient conditions in the spectral theory of Jacobi matrices and Schrödinger operators, Int. Math. Res. Notices, Volume 22 (2004), pp. 1087-1097
[3] Orthogonal Polynomials, Consultants Bureau, New York, 1961
[4] Schur's algorithm, orthogonal polynomials, and convergence of Wall's continued fractions in
[5] F. Nazarov, F. Peherstorfer, A. Volberg, P. Yuditskii, On generalized sum rules for Jacobi matrices, submitted for publication
[6] B. Simon, Orthogonal polynomials on the unit circle, Amer. Math. Soc. Colloq. Publ., in press
[7] Orthogonal Polynomials, American Mathematical Society, Providence, 1975
- Multipoint Schur algorithm and orthogonal rational functions. I: Convergence properties, Journal d'Analyse Mathématique, Volume 114 (2011), pp. 207-253 | DOI:10.1007/s11854-011-0016-9 | Zbl:1248.30015
- A note on the theorems of M.G.Krein and L.A.Sakhnovich on continuous analogs of orthogonal polynomials on the circle, Journal of Functional Analysis, Volume 226 (2005) no. 2, pp. 257-280 | DOI:10.1016/j.jfa.2005.04.014 | Zbl:1082.34071
Cité par 2 documents. Sources : zbMATH
Commentaires - Politique