Comptes Rendus
Mathematical Analysis
Orthogonal polynomials and a generalized Szegő condition
Comptes Rendus. Mathématique, Volume 339 (2004) no. 4, pp. 241-244.

Asymptotical properties of orthogonal polynomials from the so-called Szegő class are very well-studied. We obtain asymptotics of orthogonal polynomials from a considerably larger class and we apply this information to the study of their spectral behavior.

Les propriétés asymptotiques des polynômes orthogonaux de la classe de Szegő sont très bien étudiées. Nous obtenons les asymptotiques des polynômes orthogonaux appartenant à une classe considérablement plus large. Ensuite, nous appliquons cette information à l'étude du comportement spectral de ces derniers.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.06.004

Sergey Denisov 1; Stanislas Kupin 2

1 Department of Mathematics 253-37, Caltech, Pasadena, CA 91125, USA
2 CMI, université de Provence, 39, rue Joliot Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2004__339_4_241_0,
     author = {Sergey Denisov and Stanislas Kupin},
     title = {Orthogonal polynomials and a generalized {Szeg\H{o}} condition},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {241--244},
     publisher = {Elsevier},
     volume = {339},
     number = {4},
     year = {2004},
     doi = {10.1016/j.crma.2004.06.004},
     language = {en},
}
TY  - JOUR
AU  - Sergey Denisov
AU  - Stanislas Kupin
TI  - Orthogonal polynomials and a generalized Szegő condition
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 241
EP  - 244
VL  - 339
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2004.06.004
LA  - en
ID  - CRMATH_2004__339_4_241_0
ER  - 
%0 Journal Article
%A Sergey Denisov
%A Stanislas Kupin
%T Orthogonal polynomials and a generalized Szegő condition
%J Comptes Rendus. Mathématique
%D 2004
%P 241-244
%V 339
%N 4
%I Elsevier
%R 10.1016/j.crma.2004.06.004
%G en
%F CRMATH_2004__339_4_241_0
Sergey Denisov; Stanislas Kupin. Orthogonal polynomials and a generalized Szegő condition. Comptes Rendus. Mathématique, Volume 339 (2004) no. 4, pp. 241-244. doi : 10.1016/j.crma.2004.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.004/

[1] M. Cantero; L. Moral; L. Velázquez Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra Appl., Volume 362 (2003), pp. 29-56

[2] D. Damanik; R. Killip; B. Simon Necessary and sufficient conditions in the spectral theory of Jacobi matrices and Schrödinger operators, Int. Math. Res. Notices, Volume 22 (2004), pp. 1087-1097

[3] Ya. Geronimus Orthogonal Polynomials, Consultants Bureau, New York, 1961

[4] S. Khrushchev Schur's algorithm, orthogonal polynomials, and convergence of Wall's continued fractions in L2(T), J. Approx. Theory, Volume 108 (2001) no. 2, pp. 161-248

[5] F. Nazarov, F. Peherstorfer, A. Volberg, P. Yuditskii, On generalized sum rules for Jacobi matrices, submitted for publication

[6] B. Simon, Orthogonal polynomials on the unit circle, Amer. Math. Soc. Colloq. Publ., in press

[7] G. Szegő Orthogonal Polynomials, American Mathematical Society, Providence, 1975

Cited by Sources:

Comments - Policy