Comptes Rendus
Algebraic Geometry
A Note on Kato–Nakayama spaces
Comptes Rendus. Mathématique, Volume 339 (2004) no. 4, pp. 261-264.

In this Note we prove the following result. A fine log scheme over the complex numbers and its saturated have homeomorphic Kato–Nakayama associated spaces. Moreover these spaces are isomorphic as ringed spaces, either with the ring sheaf defined by Kato–Nakayama, or with that defined by Ogus. In the definition of these spaces, non-integral monoids are involved, so that the proof of the result is based on properties of nonnecessarily integral monoids.

Dans cette Note nous prouvons le resultat suivant. Un log schéma sur le corps des nombres complexes et son saturé ont des espaces de Kato–Nakayama associés qui sont homéomorphes. En plus, ces espaces sont isomorphes en tant qu'espaces annelés, soit avec le faisceau d'anneaux défini par Kato–Nakayama, soit avec le faisceau d'anneaux défini par Ogus. Dans la définition de ces espaces on utilise des monoïdes non intègres, et la démonstation utilise certaines proprietés des monoïdes non nécessairement intègres.

Published online:
DOI: 10.1016/j.crma.2004.06.009
Maurizio Cailotto 1

1 Dip. di Matematica, Via Belzoni 7, 35131 Padova, Italy
     author = {Maurizio Cailotto},
     title = {A {Note} on {Kato{\textendash}Nakayama} spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {261--264},
     publisher = {Elsevier},
     volume = {339},
     number = {4},
     year = {2004},
     doi = {10.1016/j.crma.2004.06.009},
     language = {en},
AU  - Maurizio Cailotto
TI  - A Note on Kato–Nakayama spaces
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 261
EP  - 264
VL  - 339
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2004.06.009
LA  - en
ID  - CRMATH_2004__339_4_261_0
ER  - 
%0 Journal Article
%A Maurizio Cailotto
%T A Note on Kato–Nakayama spaces
%J Comptes Rendus. Mathématique
%D 2004
%P 261-264
%V 339
%N 4
%I Elsevier
%R 10.1016/j.crma.2004.06.009
%G en
%F CRMATH_2004__339_4_261_0
Maurizio Cailotto. A Note on Kato–Nakayama spaces. Comptes Rendus. Mathématique, Volume 339 (2004) no. 4, pp. 261-264. doi : 10.1016/j.crma.2004.06.009.

[1] K. Kato Logarithmic structures of Fontaine–Illusie, Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, 1989, pp. 191-224

[2] K. Kato; C. Nakayama Log Betti cohomology, log étale cohomology and log de Rham cohomology of log schemes over C, Kodai Math. J., Volume 22 (1999), pp. 161-186

[3] L. Illusie An overview of the work of K. Fujiwara, K. Kato and C. Nakayama on logarithmic etale cohomology, Astérisque, Volume 279 (2002), pp. 271-322

[4] P. Lorenzon Indexed algebras associated to a log structure and a theorem of p-descent on log schemes, Manuscripta Math., Volume 101 (2000), pp. 271-299

[5] A. Ogus, Logarithmic De Rham cohomology, Preprint 1997

[6] A. Ogus On the logarithmic Riemann–Hilbert correspondence, Documenta Math. (2003), pp. 655-724 (Extra Volume: Kazuya Kato's Fiftieth Birthday)

[7] T. Tsuji, Saturated morphisms of logarithmic schemes, Preprint, 1997

Cited by Sources:

Comments - Policy

Articles of potential interest

Motives and homotopy theory in logarithmic geometry

Federico Binda; Doosung Park; Paul Arne Østvær

C. R. Math (2022)

p-Adic Hodge theory for open varieties

Go Yamashita

C. R. Math (2011)

Logarithmic geometry and the Milnor fibration

Thomas Cauwbergs

C. R. Math (2016)