We give a sharp asymptotics of the instability zones of the Hill operator for arbitrary real .
Dans cette Note on donne une estimation asymptotique des intervalles d'instabilité d'opérateurs de Hill de la forme où a et b sont des réels non nuls arbitraires.
Accepted:
Published online:
Plamen Djakov 1; Boris Mityagin 2
@article{CRMATH_2004__339_5_351_0, author = {Plamen Djakov and Boris Mityagin}, title = {Asymptotics of instability zones of {Hill} operators with a two term potential}, journal = {Comptes Rendus. Math\'ematique}, pages = {351--354}, publisher = {Elsevier}, volume = {339}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2004.06.019}, language = {en}, }
Plamen Djakov; Boris Mityagin. Asymptotics of instability zones of Hill operators with a two term potential. Comptes Rendus. Mathématique, Volume 339 (2004) no. 5, pp. 351-354. doi : 10.1016/j.crma.2004.06.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.019/
[1] The asymptotics of the gap in the Mathieu equation, Ann. Phys. (NY), Volume 134 (1981), pp. 76-84
[2] Periodic Schrödinger operators with large gaps and Wannier–Stark ladders, Phys. Rev. Lett., Volume 72 (1994), pp. 896-899
[3] Smoothness of solutions of a ODE, Integral Equations Operator Theory, Volume 44 (2002), pp. 149-171
[4] Smoothness of Schrödinger operator potential in the case of Gevrey type asymptotics of the gaps, J. Funct. Anal., Volume 195 (2002), pp. 89-128
[5] Spectral gaps of the periodic Schrödinger operator when its potential is an entire function, Adv. Appl. Math., Volume 31 (2003) no. 3, pp. 562-596
[6] Spectral triangles of Schrödinger operators with complex potentials, Selecta Math., Volume 9 (2003), pp. 495-528
[7] The asymptotics of spectral gaps of 1D Dirac operator with cosine potential, Lett. Math. Phys., Volume 65 (2003), pp. 95-108
[8] P. Djakov, B. Mityagin, Multiplicities of the eigenvalues of periodic Dirac operators, Ohio State Mathematical Institute Preprint 04-1 (01/07/04), 32 p
[9] Estimations asymptotiques des intervalles d'instabilité pour l'équation de Hill, Ann. Sci. École Norm. Sup., Volume 20 (1987) no. 4, pp. 641-672
[10] On the effect of the boundary conditions on the eigenvalues of ordinary differential equations, Amer. J. Math. (1981) (supplement 1981, dedicated to P. Hartman)
[11] Estimates on the stability intervals for the Hill's equation, Proc. Amer. Math. Soc., Volume 14 (1963), pp. 930-932
[12] On the determination of a Hill's equation from its spectrum, Arch. Rational Mech. Anal., Volume 19 (1965), pp. 353-362
[13] Integrable highest weight modules over affine superalgebras and number theory (J.L. Brylinski; R. Brylinski; V. Guillemin; V. Kac, eds.), Lie Theory and Geometry, in Honor of Bertram Kostant, Progr. Math., vol. 123, Birkhäuser, Boston, MA, 1994, pp. 415-456
[14] Advanced determinant calculus, Séminaire Lotharingien de Combinatoire, Volume 42 (1999) no. B42q, p. 67 (p)
[15] Introduction to Spectral Theory; Selfadjoint Ordinary Differential Operators, Transl. Math. Monographs, vol. 39, American Mathematical Society, Providence, RI, 1975
[16] W. Magnus, S. Winkler, The coexistence problem for Hill's equation, Research Report No. BR-26, Institute of Mathematical Sciences, New York University, New York, July 1958
[17] Hill's Equation, Wiley, 1969
[18] Sturm–Liouville Operators and Applications, Oper. Theory Adv. Appl., vol. 22, Birkhäuser, 1986
[19] New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan's tau function, Proc. Nat. Acad. Sci. USA, Volume 93 (1996), pp. 15004-15008
[20] Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions, Ramanujan J., Volume 6 (2002), pp. 7-149
[21] Inverse Spectral Theory, Academic Press, 1987
[22] The inverse problem for periodic potentials, CPAM, Volume 30 (1977), pp. 321-342
[23] A proof of the Kac–Wakimoto affine denominator formula for the strange series, Math. Res. Lett., Volume 7 (2000), pp. 597-604
Cited by Sources:
Comments - Policy