We study the qualitative properties of sign changing solutions of the Dirichlet problem in Ω, on ∂Ω, where Ω is a ball or an annulus and f is a function with . We prove that any radial sign changing solution has a Morse index bigger or equal to and give sufficient conditions for the nodal surface of a solution to intersect the boundary. In particular, we prove that any least energy nodal solution is non radial and its nodal surface touches the boundary.
Nous étudions les propriétés qualitatives des solutions qui changent de signe du problème de Dirichlet dans Ω, sur ∂Ω, où Ω est une boule ou un anneau et f une fonction avec . Nous prouvons que toute solution radiale qui change de signe a un indice de Morse supérieur ou égal à et donnons des conditions suffisantes pour que la surface nodale intersecte le bord. En particulier, nous prouvons que toute solution nodale d'énergie minimale est non radiale et sa surface nodale touche le bord.
Published online:
Amandine Aftalion 1; Filomena Pacella 2
@article{CRMATH_2004__339_5_339_0, author = {Amandine Aftalion and Filomena Pacella}, title = {Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {339--344}, publisher = {Elsevier}, volume = {339}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2004.07.004}, language = {en}, }
TY - JOUR AU - Amandine Aftalion AU - Filomena Pacella TI - Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains JO - Comptes Rendus. Mathématique PY - 2004 SP - 339 EP - 344 VL - 339 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2004.07.004 LA - en ID - CRMATH_2004__339_5_339_0 ER -
%0 Journal Article %A Amandine Aftalion %A Filomena Pacella %T Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains %J Comptes Rendus. Mathématique %D 2004 %P 339-344 %V 339 %N 5 %I Elsevier %R 10.1016/j.crma.2004.07.004 %G en %F CRMATH_2004__339_5_339_0
Amandine Aftalion; Filomena Pacella. Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains. Comptes Rendus. Mathématique, Volume 339 (2004) no. 5, pp. 339-344. doi : 10.1016/j.crma.2004.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.004/
[1] A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal., Volume 22 (2003) no. 1, pp. 1-14
[2] T. Bartsch, T. Weth, M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math. (2004), in press
[3] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., Volume 36 (1983) no. 4, pp. 437-477
[4] A sign-changing solution for a superlinear Dirichlet problem, Rocky Mt. J. Math., Volume 27 (1997) no. 4, pp. 1041-1053
[5] Algorithms and visualization for solutions of nonlinear elliptic equations, Int. J. Bifur. Chaos Appl. Sci. Eng., Volume 10 (2000) no. 7, pp. 1565-1612
[6] Symmetry of nodal solutions for singularly perturbed elliptic problems on a ball, Indiana Univ. Math. J. (2004)
Cited by Sources:
Comments - Policy