[Propriétés qualitatives des solutions nodales pour des problèmes elliptiques semilinéaires dans des domaines à symétrie sphérique.]
Nous étudions les propriétés qualitatives des solutions qui changent de signe du problème de Dirichlet
We study the qualitative properties of sign changing solutions of the Dirichlet problem
Publié le :
Amandine Aftalion 1 ; Filomena Pacella 2
@article{CRMATH_2004__339_5_339_0, author = {Amandine Aftalion and Filomena Pacella}, title = {Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {339--344}, publisher = {Elsevier}, volume = {339}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2004.07.004}, language = {en}, }
TY - JOUR AU - Amandine Aftalion AU - Filomena Pacella TI - Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains JO - Comptes Rendus. Mathématique PY - 2004 SP - 339 EP - 344 VL - 339 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2004.07.004 LA - en ID - CRMATH_2004__339_5_339_0 ER -
%0 Journal Article %A Amandine Aftalion %A Filomena Pacella %T Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains %J Comptes Rendus. Mathématique %D 2004 %P 339-344 %V 339 %N 5 %I Elsevier %R 10.1016/j.crma.2004.07.004 %G en %F CRMATH_2004__339_5_339_0
Amandine Aftalion; Filomena Pacella. Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains. Comptes Rendus. Mathématique, Volume 339 (2004) no. 5, pp. 339-344. doi : 10.1016/j.crma.2004.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.004/
[1] A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal., Volume 22 (2003) no. 1, pp. 1-14
[2] T. Bartsch, T. Weth, M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math. (2004), in press
[3] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., Volume 36 (1983) no. 4, pp. 437-477
[4] A sign-changing solution for a superlinear Dirichlet problem, Rocky Mt. J. Math., Volume 27 (1997) no. 4, pp. 1041-1053
[5] Algorithms and visualization for solutions of nonlinear elliptic equations, Int. J. Bifur. Chaos Appl. Sci. Eng., Volume 10 (2000) no. 7, pp. 1565-1612
[6] Symmetry of nodal solutions for singularly perturbed elliptic problems on a ball, Indiana Univ. Math. J. (2004)
Cité par Sources :
Commentaires - Politique