Comptes Rendus
Mathematical Analysis
The zero-one law for a complete orthonormal system
Comptes Rendus. Mathématique, Volume 339 (2004) no. 5, pp. 335-337.

A complete orthonormal system of functions Θ={θn}n=1,θnL[0,1] is constructed such that n=1anθn converges almost everywhere on [0,1] if {an}n=1l2 and n=1anθn diverges a.e. for any {an}n=1l2. We also show that for any complete ONS {fn}n=1 of functions defined on [0,1] there exists a fixed non decreasing subsequence {nk}k=1 of natural numbers such that for any fL[0,1]0 and some sequence of coefficients {bn}n=1,

n=1nkbnfnfa.e. whenk.

On construit un système orthonormal complet Θ={θn}n=1,θnL[0,1] tel que n=1anθn converge presque partout pour n'importe quel {an}n=1l2 et diverge presque partout pour n'importe quel {an}n=1l2. Nous démontrons que pour toute système orthonormal complet {fn}n=1 il existe une sous suite croissante {nk}k=1 d'entiers naturels tels que pour tout fL[0,1]0 il existe une suite de coefficients tels que

n=1Nkbnfnfp.p. sik.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.07.009

Kazaros Kazarian 1

1 Departamento de Matemáticas,C-XV, Universidad Autónoma de Madrid, 28049 Madrid, Spain
@article{CRMATH_2004__339_5_335_0,
     author = {Kazaros Kazarian},
     title = {The zero-one law for a complete orthonormal system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {335--337},
     publisher = {Elsevier},
     volume = {339},
     number = {5},
     year = {2004},
     doi = {10.1016/j.crma.2004.07.009},
     language = {en},
}
TY  - JOUR
AU  - Kazaros Kazarian
TI  - The zero-one law for a complete orthonormal system
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 335
EP  - 337
VL  - 339
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2004.07.009
LA  - en
ID  - CRMATH_2004__339_5_335_0
ER  - 
%0 Journal Article
%A Kazaros Kazarian
%T The zero-one law for a complete orthonormal system
%J Comptes Rendus. Mathématique
%D 2004
%P 335-337
%V 339
%N 5
%I Elsevier
%R 10.1016/j.crma.2004.07.009
%G en
%F CRMATH_2004__339_5_335_0
Kazaros Kazarian. The zero-one law for a complete orthonormal system. Comptes Rendus. Mathématique, Volume 339 (2004) no. 5, pp. 335-337. doi : 10.1016/j.crma.2004.07.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.009/

[1] F.G. Arutyunyan Representation of functions by multiple series, Akad. Nauk Armyan. SSR Dokl., Volume 64 (1977), pp. 72-76 (in Russian)

[2] J. Bourgain On Kolmogorov's rearrangement problem for orthogonal systems and Garsia's conjecture, Lecture Notes in Math., vol. 1376, 1989, pp. 207-250

[3] B.S. Kashin A certain complete orthonormal system, Mat. Sb., Volume 99 (141) (1976) no. 3, pp. 356-365 (in Russian) English translation Math. USSR-Sb., 28, 1976, pp. 315-324

[4] B.S. Kashin On some properties of orthogonal systems of convergence, Trudy Mat. Inst. Steklov, Volume 143 (1977), pp. 68-87 (in Russian) English translation Proc. Steklov Inst. Math., 1, 1980, pp. 73-92

[5] B.S. Kashin; A.A. Saakyan Orthogonal Series, Transl. Math. Monographs, vol. 75, American Mathematical Society, Providence, RI, 1989

[6] K. Kazarian A complete orthonormal system of divergence, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 85-88

[7] K. Kazarian A complete orthonormal system of divergence, J. Funct. Anal., Volume 214 (2004), pp. 284-311

[8] K.S. Kazarian; S.S. Kazarian On the representations of functions of the Lr,0r<1 spaces, Geometry, Analysis and Applications (Varanasi, 2000), World Sci. Publishing, River Edge, NJ, 2001, pp. 185-201

[9] K.S. Kazarian; D. Waterman Theorems on representations of functions by series, Mat. Sb., Volume 191 (2000) no. 12, pp. 123-140 (English translation Sb. Math., 191, 11–12, 2000, pp. 1873-1889)

[10] J. Marcinkiewicz Sur la convergence des series orthogonales, Studia Math., Volume 67 (1936), pp. 39-45

[11] D.E. Menshov Summation of the orthogonal series by linear methods, Izv. Akad. Nauk USSR Math. Ser. (1937), pp. 203-230 (in Russian)

[12] N.B. Pogosyan Representation of measurable functions by bases in Lp[0,1], p2, Akad. Nauk Armyan. SSR Dokl., Volume 63 (1976), pp. 205-209 (in Russian)

[13] P.L. Ulyanov Solved and unsolved problems in the theory of trigonometric and orthogonal series, Uspekhi Mat. Nauk, Volume 19 (1) (1964) no. 115, pp. 3-69 (in Russian) English translation Russian Math. Surveys, 19, 1964

[14] A.A. Talalyan Representation of measurable functions by series, Uspekhi Mat. Nauk, Volume 15 (5) (1960) no. 95, pp. 77-141 (English translation Russian Math. Surveys, 15, 1960)

Cited by Sources:

Comments - Policy