A complete orthonormal system of functions is constructed such that converges almost everywhere on if and diverges a.e. for any . We also show that for any complete ONS of functions defined on there exists a fixed non decreasing subsequence of natural numbers such that for any and some sequence of coefficients ,
On construit un système orthonormal complet tel que converge presque partout pour n'importe quel et diverge presque partout pour n'importe quel . Nous démontrons que pour toute système orthonormal complet il existe une sous suite croissante d'entiers naturels tels que pour tout il existe une suite de coefficients tels que
Accepted:
Published online:
Kazaros Kazarian 1
@article{CRMATH_2004__339_5_335_0, author = {Kazaros Kazarian}, title = {The zero-one law for a complete orthonormal system}, journal = {Comptes Rendus. Math\'ematique}, pages = {335--337}, publisher = {Elsevier}, volume = {339}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2004.07.009}, language = {en}, }
Kazaros Kazarian. The zero-one law for a complete orthonormal system. Comptes Rendus. Mathématique, Volume 339 (2004) no. 5, pp. 335-337. doi : 10.1016/j.crma.2004.07.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.009/
[1] Representation of functions by multiple series, Akad. Nauk Armyan. SSR Dokl., Volume 64 (1977), pp. 72-76 (in Russian)
[2] On Kolmogorov's rearrangement problem for orthogonal systems and Garsia's conjecture, Lecture Notes in Math., vol. 1376, 1989, pp. 207-250
[3] A certain complete orthonormal system, Mat. Sb., Volume 99 (141) (1976) no. 3, pp. 356-365 (in Russian) English translation Math. USSR-Sb., 28, 1976, pp. 315-324
[4] On some properties of orthogonal systems of convergence, Trudy Mat. Inst. Steklov, Volume 143 (1977), pp. 68-87 (in Russian) English translation Proc. Steklov Inst. Math., 1, 1980, pp. 73-92
[5] Orthogonal Series, Transl. Math. Monographs, vol. 75, American Mathematical Society, Providence, RI, 1989
[6] A complete orthonormal system of divergence, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 85-88
[7] A complete orthonormal system of divergence, J. Funct. Anal., Volume 214 (2004), pp. 284-311
[8] On the representations of functions of the spaces, Geometry, Analysis and Applications (Varanasi, 2000), World Sci. Publishing, River Edge, NJ, 2001, pp. 185-201
[9] Theorems on representations of functions by series, Mat. Sb., Volume 191 (2000) no. 12, pp. 123-140 (English translation Sb. Math., 191, 11–12, 2000, pp. 1873-1889)
[10] Sur la convergence des series orthogonales, Studia Math., Volume 67 (1936), pp. 39-45
[11] Summation of the orthogonal series by linear methods, Izv. Akad. Nauk USSR Math. Ser. (1937), pp. 203-230 (in Russian)
[12] Representation of measurable functions by bases in , , Akad. Nauk Armyan. SSR Dokl., Volume 63 (1976), pp. 205-209 (in Russian)
[13] Solved and unsolved problems in the theory of trigonometric and orthogonal series, Uspekhi Mat. Nauk, Volume 19 (1) (1964) no. 115, pp. 3-69 (in Russian) English translation Russian Math. Surveys, 19, 1964
[14] Representation of measurable functions by series, Uspekhi Mat. Nauk, Volume 15 (5) (1960) no. 95, pp. 77-141 (English translation Russian Math. Surveys, 15, 1960)
Cited by Sources:
Comments - Policy