Let Ω be a smooth bounded domain in , . We show that Hardy's inequality involving the distance to the boundary, with best constant (), may still be improved by adding a multiple of the critical Sobolev norm.
Soit Ω un ouvert borné et regulier dans , . On montre que l'inegalité de Hardy, liée à la distance au bord, avec meilleure constante (), peut être améliorée en ajoutant un multiple de la norme de Sobolev critique.
Published online:
S. Filippas 1, 2; V.G. Maz'ya 3, 4; A. Tertikas 2, 5
@article{CRMATH_2004__339_7_483_0, author = {S. Filippas and V.G. Maz'ya and A. Tertikas}, title = {Sharp {Hardy{\textendash}Sobolev} inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--486}, publisher = {Elsevier}, volume = {339}, number = {7}, year = {2004}, doi = {10.1016/j.crma.2004.07.023}, language = {en}, }
S. Filippas; V.G. Maz'ya; A. Tertikas. Sharp Hardy–Sobolev inequalities. Comptes Rendus. Mathématique, Volume 339 (2004) no. 7, pp. 483-486. doi : 10.1016/j.crma.2004.07.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.023/
[1] A unified approach to improved Hardy inequalities with best constants, Trans. Amer. Math. Soc., Volume 356 (2004) no. 6, pp. 2169-2196
[2] Hardy's inequalities revisited, Ann. Scuola Norm. Pisa, Volume 25 (1997), pp. 217-237
[3] Hardy-type inequalities, J. Eur. Math. Soc., Volume 6 (2004) no. 3, pp. 335-365
[4] S. Filippas, V.G. Maz'ya, A. Tertikas, Critical Hardy Sobolev inequalities, in preparation
[5] Optimizing improved Hardy inequalities, J. Funct. Anal., Volume 192 (2002), pp. 186-233
[6] Sobolev Spaces, Springer, 1985
[7] The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., Volume 173 (2000), pp. 103-153
Cited by Sources:
Comments - Policy