For a rational formal power series in N non-commuting indeterminates, with matrix coefficients, we establish the formula which relates the intersection of the null spaces of coefficients to the intersection of the null spaces of values of this series at N-tuples of matrices, for n large enough. As an application, we formulate the criteria of observability, controllability, and minimality for a recognizable formal power series representation in terms of matrix substitutions.
Nous démontrons une formule qui relie l'intersection des noyaux des coefficients d'une série formelle de N variables non commutatives à l'intersection des noyaux des valeurs de cette série pour des N-uplets de matrices d'ordre n pour n assez grand. Comme application, nous donnons des critères d'observabilité, de commandabilité et de minimalité en termes de représentations pour les séries formelles reconnaissables et en utilisant des substitutions matricielles.
Accepted:
Published online:
Daniel Alpay 1; Dmitry S. Kalyuzhnyı̆-Verbovetzkiı̆ 1
@article{CRMATH_2004__339_8_533_0, author = {Daniel Alpay and Dmitry S. Kalyuzhny{\i}̆-Verbovetzki{\i}̆}, title = {On the intersection of null spaces for matrix substitutions in a non-commutative rational formal power series}, journal = {Comptes Rendus. Math\'ematique}, pages = {533--538}, publisher = {Elsevier}, volume = {339}, number = {8}, year = {2004}, doi = {10.1016/j.crma.2004.08.005}, language = {en}, }
TY - JOUR AU - Daniel Alpay AU - Dmitry S. Kalyuzhnyı̆-Verbovetzkiı̆ TI - On the intersection of null spaces for matrix substitutions in a non-commutative rational formal power series JO - Comptes Rendus. Mathématique PY - 2004 SP - 533 EP - 538 VL - 339 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2004.08.005 LA - en ID - CRMATH_2004__339_8_533_0 ER -
%0 Journal Article %A Daniel Alpay %A Dmitry S. Kalyuzhnyı̆-Verbovetzkiı̆ %T On the intersection of null spaces for matrix substitutions in a non-commutative rational formal power series %J Comptes Rendus. Mathématique %D 2004 %P 533-538 %V 339 %N 8 %I Elsevier %R 10.1016/j.crma.2004.08.005 %G en %F CRMATH_2004__339_8_533_0
Daniel Alpay; Dmitry S. Kalyuzhnyı̆-Verbovetzkiı̆. On the intersection of null spaces for matrix substitutions in a non-commutative rational formal power series. Comptes Rendus. Mathématique, Volume 339 (2004) no. 8, pp. 533-538. doi : 10.1016/j.crma.2004.08.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.08.005/
[1] Minimal Factorization of Matrix and Operator Functions, Oper. Theory Adv. Appl., vol. 1, Birkhäuser, Basel, 1979
[2] On formal power series representations for uncertain systems, IEEE Trans. Automat. Contr., Volume 46 (2001) no. 2, pp. 314-319
[3] A necessary and sufficient minimality condition for uncertain systems, IEEE Trans. Automat. Contr., Volume 44 (1999) no. 10, pp. 1802-1813
[4] Les séries rationnelles et leurs langages, Masson, Paris, 1984
[5] Matrices de Hankel, J. Math. Pures Appl., Volume 53 (1974) no. 9, pp. 197-222
[6] Un codage non commutatif pour certains systèmes échantillonnés non linéaires, Inform. Contr., Volume 38 (1978) no. 3, pp. 264-287
[7] Manipulating matrix inequalities automatically, (Notre Dame, IN, 2002), Springer, New York (2003), pp. 237-256
[8] Representation of events in nerve nets and finite automata, Automata Studies, Ann. Math. Stud., vol. 34, Princeton University Press, Princeton, NJ, 1956, pp. 3-41
[9] T. Malakorn, Multidimensional linear systems and robust control, Ph.D. thesis, Virginia Tech., Blacksburg, 2003
[10] Rings with Polynomial Identities, Marcel Dekker, New York, 1973
[11] Polynomial Identities in Ring Theory, Academic Press, New York, 1980
[12] On the definition of a family of automata, Inform. Contr., Volume 4 (1961), pp. 245-270
Cited by Sources:
Comments - Policy