Comptes Rendus
Topology/Group Theory
Integral cohomology of the Milnor fibre of the discriminant bundle associated with a finite Coxeter group
Comptes Rendus. Mathématique, Volume 339 (2004) no. 8, pp. 573-578.

Let W be a finite Coxeter group generated by real reflections in a complex vector space. We compute the integral cohomology of the Milnor fibre of the discriminant bundle Δ:Cn/WC, together with the action of the monodromy, for the whole list of exceptional groups. Here Δ is the map induced by the square of the polynomial defining the arrangement of reflection hyperplanes of W. The computation is equivalent to that of the cohomology, with suitable local coefficients, of the corresponding Artin group. These computations complete, for the exceptional cases, those performed by De Concini et al. for rational coefficients.

Soit W un groupe de Coxeter fini engendré par des réflexions réelles dans un espace vectoriel complexe. On calcule la cohomologie entière de la fibre de Milnor du fibré discriminant Δ:Cn/WC et l'action de la monodromie, pour tous les groupes exceptionnels. Ici Δ est l'application induite par le carré du polynôme qui définit l'arrangement des hyperplans de réflexion de W. Le calcul équivaut à celui de la cohomologie, à coefficients locaux bien choisis, du groupe d'Artin correspondant. Ces calculs complètent, pour les cas exceptionnels, ceux de De Concini et al. à coefficients rationnels.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.09.008
Filippo Callegaro 1; Mario Salvetti 2

1 Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
2 Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti, 2, 56127 Pisa, Italy
@article{CRMATH_2004__339_8_573_0,
     author = {Filippo Callegaro and Mario Salvetti},
     title = {Integral cohomology of the {Milnor} fibre of the discriminant bundle associated with a finite {Coxeter} group},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {573--578},
     publisher = {Elsevier},
     volume = {339},
     number = {8},
     year = {2004},
     doi = {10.1016/j.crma.2004.09.008},
     language = {en},
}
TY  - JOUR
AU  - Filippo Callegaro
AU  - Mario Salvetti
TI  - Integral cohomology of the Milnor fibre of the discriminant bundle associated with a finite Coxeter group
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 573
EP  - 578
VL  - 339
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2004.09.008
LA  - en
ID  - CRMATH_2004__339_8_573_0
ER  - 
%0 Journal Article
%A Filippo Callegaro
%A Mario Salvetti
%T Integral cohomology of the Milnor fibre of the discriminant bundle associated with a finite Coxeter group
%J Comptes Rendus. Mathématique
%D 2004
%P 573-578
%V 339
%N 8
%I Elsevier
%R 10.1016/j.crma.2004.09.008
%G en
%F CRMATH_2004__339_8_573_0
Filippo Callegaro; Mario Salvetti. Integral cohomology of the Milnor fibre of the discriminant bundle associated with a finite Coxeter group. Comptes Rendus. Mathématique, Volume 339 (2004) no. 8, pp. 573-578. doi : 10.1016/j.crma.2004.09.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.008/

[1] V.I. Arnol'd; S.M. Gusein-Zade; A.N. Varchenko Singularities of Differentiable Maps, vol. II, Birkhäuser, Boston, 1988

[2] N. Bourbaki Groupes et algèbres de Lie, Masson, Paris, 1981 (Ch. 4–6)

[3] E. Brieskorn Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math., Volume 12 (1971), pp. 57-61

[4] E. Brieskorn; K. Saito Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271

[5] K. Brown Cohomology of Groups, Graduate Texts in Math., vol. 87, Springer-Verlag, 1982

[6] F. Callegaro, Proprietá intere della coomologia dei gruppi di Artin e della fibra di Milnor associata, Master Thesis, Dipartimento di Matematica Univ. di Pisa, June, 2003

[7] D. Cohen; A. Suciu Homology of iterated semidirect products of free groups, J. Pure Appl. Alg., Volume 126 (1998), pp. 87-120

[8] C. De Concini; M. Salvetti Cohomology of Artin groups, Math. Res. Lett., Volume 3 (1996), pp. 293-297

[9] C. De Concini; C. Procesi; M. Salvetti Arithmetic properties of the cohomology of braid groups, Topology, Volume 40 (2001), pp. 739-751

[10] C. De Concini; C. Procesi; M. Salvetti; F. Stumbo Arithmetic properties of the cohomology of Artin groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume XXVIII (1999) no. 4, pp. 695-717

[11] P. Deligne Les immeubles des groupes des tresses généralisés, Invent. Math., Volume 17 (1972), pp. 273-302

[12] J. Denef; F. Loeser Regular elements and monodromy of discriminants of the finite reflection groups, Indag. Math. (N.S.), Volume 6 (1995) no. 2, pp. 129-143

[13] E.V. Frenkel Cohomology of the commutator subgroup of the braids group, Functional Anal. Appl., Volume 22 (1988) no. 3, pp. 248-250

[14] J.E. Humpreys Reflection Groups and Coxeter Groups, Cambridge University Press, 1990

[15] J.W. Milnor Singular Points of Complex Hypersurfaces, Ann. of Math. Stud., vol. 61, Princeton University Press, Princeton, 1968

[16] M. Salvetti Topology of the complement of real hyperplanes in Cn, Invent. Math., Volume 88 (1987), pp. 167-189

[17] M. Salvetti The homotopy type of Artin groups, Math. Res. Lett., Volume 1 (1994), pp. 565-577

Cited by Sources:

Comments - Policy


Articles of potential interest

Fundamental group of discriminant complements of Brieskorn–Pham polynomials

Michael Lönne

C. R. Math (2007)


Explicit presentations for the dual braid monoids

Matthieu Picantin

C. R. Math (2002)