[Évolution stochastique de Loewner dans des domaines multiple connexes.]
Nous construisons l'évolution stochastique radiale de Loewner dans des domaines multiple connexes, en choisissant le disque d'unité avec des segments concentriqueés, comme famille de référence. La fonction naturelle qui fait croître les traces de l'évolution est une diffusion sur l'espace associé des modules. La diffusion s'arrête dès qu'il touche le bord de l'espace des modules. Nous démontrons que pour cette fonction qui engendre la croissance de ces compacts aléatoires, on trouve une transition de phase pour
We construct radial stochastic Loewner evolution in multiply connected domains, choosing the unit disk with concentric circular slits as a family of standard domains. The natural driving function or input is a diffusion on the associated moduli space. The diffusion stops when it reaches the boundary of the moduli space. We show that for this driving function the family of random growing compacts has a phase transition for
Accepté le :
Publié le :
Robert O. Bauer 1 ; Roland M. Friedrich 2
@article{CRMATH_2004__339_8_579_0, author = {Robert O. Bauer and Roland M. Friedrich}, title = {Stochastic {Loewner} evolution in multiply connected domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {579--584}, publisher = {Elsevier}, volume = {339}, number = {8}, year = {2004}, doi = {10.1016/j.crma.2004.08.010}, language = {en}, }
Robert O. Bauer; Roland M. Friedrich. Stochastic Loewner evolution in multiply connected domains. Comptes Rendus. Mathématique, Volume 339 (2004) no. 8, pp. 579-584. doi : 10.1016/j.crma.2004.08.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.08.010/
[1] Untersuchungen über konforme Abbildung von zweifach zusammenhängenden Gebieten, Proc. Phys. Math. Soc. Japan, Volume 25 (1943) no. 3, pp. 1-42
[2] On conformal slit mapping of multiply-connected domains, Proc. Jpn. Acad., Volume 26 (1950) no. 7, pp. 26-31
[3] Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math., Volume 187 (2001) no. 2, pp. 275-308
[4] Values of Brownian intersection exponents. II. Plane exponents, Acta Math., Volume 187 (2001) no. 2, pp. 237-273
[5] Conformal restriction: the chordal case, J. Amer. Math. Soc., Volume 16 (2003) no. 4, pp. 917-955 (electronic)
[6] Basic properties of SLE | arXiv
[7] Hadamard's formula and variation of domain-functions, Amer. J. Math., Volume 68 (1946), pp. 417-448
[8] Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., Volume 118 (2000), pp. 221-288
- Dipolar Komatu–Loewner differential equation, Applicable Analysis (2024), p. 1 | DOI:10.1080/00036811.2024.2334755
- SLE loop measures, Probability Theory and Related Fields, Volume 179 (2021) no. 1-2, p. 345 | DOI:10.1007/s00440-020-01011-7
- On the slit motion obeying chordal Komatu–Loewner equation with finite explosion time, Journal of Evolution Equations, Volume 20 (2020) no. 1, p. 233 | DOI:10.1007/s00028-019-00519-3
- Schramm’s formula for multiple loop-erased random walks, Journal of Statistical Mechanics: Theory and Experiment, Volume 2018 (2018) no. 10, p. 103106 | DOI:10.1088/1742-5468/aae5a6
- Stochastic Komatu–Loewner evolutions and BMD domain constant, Stochastic Processes and their Applications, Volume 128 (2018) no. 2, p. 545 | DOI:10.1016/j.spa.2017.05.007
- Dispersionless Pfaff-Toda hierarchy and elliptic Löwner equation, Journal of Mathematical Physics, Volume 57 (2016) no. 9 | DOI:10.1063/1.4962919
- Dispersionless DKP hierarchy and the elliptic Löwner equation, Journal of Physics A: Mathematical and Theoretical, Volume 47 (2014) no. 39, p. 392001 | DOI:10.1088/1751-8113/47/39/392001
- Conformally invariant scaling limits: an overview and a collection of problems, Selected Works of Oded Schramm (2011), p. 1161 | DOI:10.1007/978-1-4419-9675-6_34
- Oded Schramm: From Circle Packing to SLE, Selected Works of Oded Schramm (2011), p. 3 | DOI:10.1007/978-1-4419-9675-6_1
- Oded Schramm: From circle packing to SLE, The Annals of Probability, Volume 39 (2011) no. 5 | DOI:10.1214/10-aop590
- On chordal and bilateral SLE in multiply connected domains, Mathematische Zeitschrift, Volume 258 (2008) no. 2, p. 241 | DOI:10.1007/s00209-006-0041-z
- Identification of the Stress-Energy Tensor Through Conformal Restriction in SLE and Related Processes, Communications in Mathematical Physics, Volume 268 (2006) no. 3, pp. 687-716 | DOI:10.1007/s00220-006-0106-1
- On radial stochastic Loewner evolution in multiply connected domains, Journal of Functional Analysis, Volume 237 (2006) no. 2, p. 565 | DOI:10.1016/j.jfa.2005.12.023
- Course 3 Conformal random geometry, Mathematical statistical physics, École d'ÉtÉ de physique des houches session LXXXIII, Volume 83 (2006), p. 101 | DOI:10.1016/s0924-8099(06)80040-5
- The correlator toolbox, metrics and moduli, Nuclear Physics B, Volume 733 (2006) no. 1-2, p. 91 | DOI:10.1016/j.nuclphysb.2005.10.040
- 2D growth processes: SLE and Loewner chains, Physics Reports, Volume 432 (2006) no. 3-4, p. 115 | DOI:10.1016/j.physrep.2006.06.002
- Conformal Random Geometry, arXiv (2006) | DOI:10.48550/arxiv.math-ph/0608053 | arXiv:math-ph/0608053
- SLE(kappa,rho) and Conformal Field Theory, arXiv (2004) | DOI:10.48550/arxiv.math-ph/0412033 | arXiv:math-ph/0412033
Cité par 18 documents. Sources : Crossref, NASA ADS
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier