Comptes Rendus
Probability Theory
Stochastic Loewner evolution in multiply connected domains
[Évolution stochastique de Loewner dans des domaines multiple connexes.]
Comptes Rendus. Mathématique, Volume 339 (2004) no. 8, pp. 579-584.

Nous construisons l'évolution stochastique radiale de Loewner dans des domaines multiple connexes, en choisissant le disque d'unité avec des segments concentriqueés, comme famille de référence. La fonction naturelle qui fait croître les traces de l'évolution est une diffusion sur l'espace associé des modules. La diffusion s'arrête dès qu'il touche le bord de l'espace des modules. Nous démontrons que pour cette fonction qui engendre la croissance de ces compacts aléatoires, on trouve une transition de phase pour κ=4 et κ=8, et qu'ils satisfont la propriété de localité pour κ=6.

We construct radial stochastic Loewner evolution in multiply connected domains, choosing the unit disk with concentric circular slits as a family of standard domains. The natural driving function or input is a diffusion on the associated moduli space. The diffusion stops when it reaches the boundary of the moduli space. We show that for this driving function the family of random growing compacts has a phase transition for κ=4 and κ=8, and that it satisfies locality for κ=6.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.08.010

Robert O. Bauer 1 ; Roland M. Friedrich 2

1 Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, USA
2 Institute for Advanced Study, Princeton, NJ 08540, USA
@article{CRMATH_2004__339_8_579_0,
     author = {Robert O. Bauer and Roland M. Friedrich},
     title = {Stochastic {Loewner} evolution in multiply connected domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {579--584},
     publisher = {Elsevier},
     volume = {339},
     number = {8},
     year = {2004},
     doi = {10.1016/j.crma.2004.08.010},
     language = {en},
}
TY  - JOUR
AU  - Robert O. Bauer
AU  - Roland M. Friedrich
TI  - Stochastic Loewner evolution in multiply connected domains
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 579
EP  - 584
VL  - 339
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2004.08.010
LA  - en
ID  - CRMATH_2004__339_8_579_0
ER  - 
%0 Journal Article
%A Robert O. Bauer
%A Roland M. Friedrich
%T Stochastic Loewner evolution in multiply connected domains
%J Comptes Rendus. Mathématique
%D 2004
%P 579-584
%V 339
%N 8
%I Elsevier
%R 10.1016/j.crma.2004.08.010
%G en
%F CRMATH_2004__339_8_579_0
Robert O. Bauer; Roland M. Friedrich. Stochastic Loewner evolution in multiply connected domains. Comptes Rendus. Mathématique, Volume 339 (2004) no. 8, pp. 579-584. doi : 10.1016/j.crma.2004.08.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.08.010/

[1] Y. Komatu Untersuchungen über konforme Abbildung von zweifach zusammenhängenden Gebieten, Proc. Phys. Math. Soc. Japan, Volume 25 (1943) no. 3, pp. 1-42

[2] Y. Komatu On conformal slit mapping of multiply-connected domains, Proc. Jpn. Acad., Volume 26 (1950) no. 7, pp. 26-31

[3] G.F. Lawler; O. Schramm; W. Werner Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math., Volume 187 (2001) no. 2, pp. 275-308

[4] G.F. Lawler; O. Schramm; W. Werner Values of Brownian intersection exponents. II. Plane exponents, Acta Math., Volume 187 (2001) no. 2, pp. 237-273

[5] G.F. Lawler; O. Schramm; W. Werner Conformal restriction: the chordal case, J. Amer. Math. Soc., Volume 16 (2003) no. 4, pp. 917-955 (electronic)

[6] S. Rohde; O. Schramm Basic properties of SLE | arXiv

[7] M. Schiffer Hadamard's formula and variation of domain-functions, Amer. J. Math., Volume 68 (1946), pp. 417-448

[8] O. Schramm Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., Volume 118 (2000), pp. 221-288

  • Shi-Yi Lan; Su-Yang Li Dipolar Komatu–Loewner differential equation, Applicable Analysis (2024), p. 1 | DOI:10.1080/00036811.2024.2334755
  • Dapeng Zhan SLE loop measures, Probability Theory and Related Fields, Volume 179 (2021) no. 1-2, p. 345 | DOI:10.1007/s00440-020-01011-7
  • Takuya Murayama On the slit motion obeying chordal Komatu–Loewner equation with finite explosion time, Journal of Evolution Equations, Volume 20 (2020) no. 1, p. 233 | DOI:10.1007/s00028-019-00519-3
  • Adrien Poncelet Schramm’s formula for multiple loop-erased random walks, Journal of Statistical Mechanics: Theory and Experiment, Volume 2018 (2018) no. 10, p. 103106 | DOI:10.1088/1742-5468/aae5a6
  • Zhen-Qing Chen; Masatoshi Fukushima Stochastic Komatu–Loewner evolutions and BMD domain constant, Stochastic Processes and their Applications, Volume 128 (2018) no. 2, p. 545 | DOI:10.1016/j.spa.2017.05.007
  • V. Akhmedova; A. Zabrodin Dispersionless Pfaff-Toda hierarchy and elliptic Löwner equation, Journal of Mathematical Physics, Volume 57 (2016) no. 9 | DOI:10.1063/1.4962919
  • V Akhmedova; A Zabrodin Dispersionless DKP hierarchy and the elliptic Löwner equation, Journal of Physics A: Mathematical and Theoretical, Volume 47 (2014) no. 39, p. 392001 | DOI:10.1088/1751-8113/47/39/392001
  • Oded Schramm Conformally invariant scaling limits: an overview and a collection of problems, Selected Works of Oded Schramm (2011), p. 1161 | DOI:10.1007/978-1-4419-9675-6_34
  • Steffen Rohde* Oded Schramm: From Circle Packing to SLE, Selected Works of Oded Schramm (2011), p. 3 | DOI:10.1007/978-1-4419-9675-6_1
  • Steffen Rohde Oded Schramm: From circle packing to SLE, The Annals of Probability, Volume 39 (2011) no. 5 | DOI:10.1214/10-aop590
  • Robert O. Bauer; Roland M. Friedrich On chordal and bilateral SLE in multiply connected domains, Mathematische Zeitschrift, Volume 258 (2008) no. 2, p. 241 | DOI:10.1007/s00209-006-0041-z
  • B. Doyon; V. Riva; J. Cardy Identification of the Stress-Energy Tensor Through Conformal Restriction in SLE and Related Processes, Communications in Mathematical Physics, Volume 268 (2006) no. 3, pp. 687-716 | DOI:10.1007/s00220-006-0106-1
  • Robert O. Bauer; Roland M. Friedrich On radial stochastic Loewner evolution in multiply connected domains, Journal of Functional Analysis, Volume 237 (2006) no. 2, p. 565 | DOI:10.1016/j.jfa.2005.12.023
  • Bertrand Duplantier Course 3 Conformal random geometry, Mathematical statistical physics, École d'ÉtÉ de physique des houches session LXXXIII, Volume 83 (2006), p. 101 | DOI:10.1016/s0924-8099(06)80040-5
  • Robert O. Bauer; Roland M. Friedrich The correlator toolbox, metrics and moduli, Nuclear Physics B, Volume 733 (2006) no. 1-2, p. 91 | DOI:10.1016/j.nuclphysb.2005.10.040
  • Michel Bauer; Denis Bernard 2D growth processes: SLE and Loewner chains, Physics Reports, Volume 432 (2006) no. 3-4, p. 115 | DOI:10.1016/j.physrep.2006.06.002
  • Bertrand Duplantier Conformal Random Geometry, arXiv (2006) | DOI:10.48550/arxiv.math-ph/0608053 | arXiv:math-ph/0608053
  • John Cardy SLE(kappa,rho) and Conformal Field Theory, arXiv (2004) | DOI:10.48550/arxiv.math-ph/0412033 | arXiv:math-ph/0412033

Cité par 18 documents. Sources : Crossref, NASA ADS

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: