We construct secondary classes for super-foliations of codimension and . We indicate how to generalize this construction for any regular super-foliations on super-manifolds. We interpret the secondary classes as classes of foliated flat connections.
Nous déterminons des classes caractéristiques secondaires de super-feuilletages de codimension et . Nous indiquons comment généraliser cette construction pour les feuilletages réguliers de codimension quelconque sur des super-variétés. Nous interprètons ensuite les classes ainsi construites comme des classes caractéristiques associées à des connexions feuilletées plates.
Accepted:
Published online:
Camille Laurent-Gengoux 1
@article{CRMATH_2004__339_8_567_0, author = {Camille Laurent-Gengoux}, title = {Secondary characteristic classes of super-foliations}, journal = {Comptes Rendus. Math\'ematique}, pages = {567--572}, publisher = {Elsevier}, volume = {339}, number = {8}, year = {2004}, doi = {10.1016/j.crma.2004.06.006}, language = {en}, }
Camille Laurent-Gengoux. Secondary characteristic classes of super-foliations. Comptes Rendus. Mathématique, Volume 339 (2004) no. 8, pp. 567-572. doi : 10.1016/j.crma.2004.06.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.006/
[1] On the cohomology of the Lie super-algebra . Unconventional Lie algebras, Adv. Soviet Math., vol. 17, American Mathematical Society, Providence, RI, 1993, pp. 1-13
[2] Homogeneous spaces of infinite dimensional Lie algebras and characteristic classes of foliations, Uspekhi Mat. Nauk, Volume 28 (1973) no. 4(172), pp. 103-138
[3] Characteristic classes of foliations, Russian Math. Surveys, Volume 28 (1973) no. 2, pp. 139-153
[4] Cohomology of Infinite-Dimensional Lie Algebras, Contemp. Soviet Math., vol. XII, Consultants Bureau, New York, 1986 (Translated from the Russian by A.B. Sosinskij)
[5] Les superalgèbres de Lie et leurs représentations. Géométrie différentielle, Travaux en Cours, vol. 33, Hermann, 1988, pp. 161-171
[6] C. Laurent-Gengoux, Characteristic classes of super-foliations, Preprint
[7] Introduction to the theory of super-manifolds, Uspekhi Mat. Nauk, Volume 35 (1980) no. 1(211), pp. 3-57 (in Russian)
[8] Geometric properties of involutive distributions on graded manifolds, Indag. Mat. (N.S.), Volume 8 (1997), pp. 217-246
[9] G.M. Tuynman, Supermanifolds and Super Lie Groups: Basic Theory, Kluwer Academic, in press
Cited by Sources:
Comments - Policy