Nous définissons des algèbres de Hopf dont les bases sont étiquetées par divers types de graphes et hypergraphes et les réalisons comme sous-algèbres d'une algèbre de polynômes en une infinité de variables. Ces algèbres sont graduées par le nombre d'arêtes et peuvent être considérées comme des généralisations des fonctions symétriques ou quasi-symétriques.
We define graded Hopf algebras with bases labeled by various types of graphs and hypergraphs, provided with natural embeddings into an algebra of polynomials in infinitely many variables. These algebras are graded by the number of edges and can be considered as generalizations of symmetric or quasi-symmetric functions.
Accepté le :
Publié le :
Jean-Christophe Novelli 1 ; Jean-Yves Thibon 1 ; Nicolas M. Thiéry 1, 2
@article{CRMATH_2004__339_9_607_0, author = {Jean-Christophe Novelli and Jean-Yves Thibon and Nicolas M. Thi\'ery}, title = {Alg\`ebres de {Hopf} de graphes}, journal = {Comptes Rendus. Math\'ematique}, pages = {607--610}, publisher = {Elsevier}, volume = {339}, number = {9}, year = {2004}, doi = {10.1016/j.crma.2004.09.012}, language = {fr}, }
Jean-Christophe Novelli; Jean-Yves Thibon; Nicolas M. Thiéry. Algèbres de Hopf de graphes. Comptes Rendus. Mathématique, Volume 339 (2004) no. 9, pp. 607-610. doi : 10.1016/j.crma.2004.09.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.012/
[1] Combinatorial Hopf algebras and generalized Dehn–Sommerville relations | arXiv
[2] Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras, Int. J. Algebra Comput., Volume 12 (2002), pp. 671-717
[3] Multipartite P-partitions and inner product of skew Schur functions (C. Greene, ed.), Combinatorics and Algebra, Contemp. Math., vol. 34, 1984, pp. 289-301
[4] Coalgebras and algebras in combinatorics, Stud. Appl. Math., Volume 61 (1979), pp. 93-139
[5] Some new methods in reconstruction theory, Combinatorial Mathematics, IX (Brisbane, 1981), Springer, Berlin, 1982, pp. 89-114
[6] Combinatorics of (perturbative) quantum field theory, Phys. Rep., Volume 363 (2002), pp. 387-424
[7] Hopf algebra of the planar binary trees, Adv. Math., Volume 139 (1998) no. 2, pp. 293-309
[8] Symmetric Functions and Hall Polynomials, Oxford University Press, 1995
[9] Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, Volume 177 (1995), pp. 967-982
[10] A Hopf algebra of parking functions | arXiv
[11] Invariants algébriques de graphes et reconstruction, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001) no. 9, pp. 821-826
[12] Incidence Hopf algebras, J. Pure Appl. Algebra, Volume 96 (1994), pp. 299-330
[13] The On-Line Encyclopedia of Integer Sequences http://www.research.att.com/~njas/sequences/
[14] Algebraic invariants of graphs: a study based on computer exploration, SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation), Volume 34 (2000) no. 3, pp. 9-20
Cité par Sources :
Commentaires - Politique