Numerical Analysis
Domain decomposition methods of dual-primal FETI type for edge element approximations in three dimensions
Comptes Rendus. Mathématique, Volume 339 (2004) no. 9, pp. 673-678.

We consider domain decomposition algorithms of FETI type for edge element approximations in three dimensions. We first show that a strong coupling exists between tangential degrees of freedom associated to the subdomain edges and faces. We then propose a dual-primal FETI algorithm that relies on a change of basis and on a suitable choice of a coarse space. We give a logarithmic bound for the condition number of the resulting preconditioned operator. Numerical results confirm this bound and the necessity of performing a change of basis.

Nous considérons des algorithmes FETI pour des approximations en éléments finis d'arête en dimension trois. Nous montrons d'abord qu'il existe un couplage fort entre les degrés de liberté tangentiels associés aux arêtes et aux faces des sous-domaines. Nous proposons ensuite un algorithme FETI dual-primal qui utilise un changement de base et un choix particulier pour le solveur grossier. Nous donnons une borne logarithmique pour le nombre de conditionnement de l'algorithme. Les tests numériques confirment cette borne et la nécessité du changement de base.

Accepted:
Published online:
DOI: 10.1016/j.crma.2004.09.021
Andrea Toselli 1

1 Seminar for Applied Mathematics, ETH Zürich, CH-8092 Zürich, Switzerland
@article{CRMATH_2004__339_9_673_0,
author = {Andrea Toselli},
title = {Domain decomposition methods of dual-primal {FETI} type for edge element approximations in three dimensions},
journal = {Comptes Rendus. Math\'ematique},
pages = {673--678},
publisher = {Elsevier},
volume = {339},
number = {9},
year = {2004},
doi = {10.1016/j.crma.2004.09.021},
language = {en},
}
TY  - JOUR
AU  - Andrea Toselli
TI  - Domain decomposition methods of dual-primal FETI type for edge element approximations in three dimensions
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 673
EP  - 678
VL  - 339
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2004.09.021
LA  - en
ID  - CRMATH_2004__339_9_673_0
ER  - 
%0 Journal Article
%A Andrea Toselli
%T Domain decomposition methods of dual-primal FETI type for edge element approximations in three dimensions
%J Comptes Rendus. Mathématique
%D 2004
%P 673-678
%V 339
%N 9
%I Elsevier
%R 10.1016/j.crma.2004.09.021
%G en
%F CRMATH_2004__339_9_673_0
Andrea Toselli. Domain decomposition methods of dual-primal FETI type for edge element approximations in three dimensions. Comptes Rendus. Mathématique, Volume 339 (2004) no. 9, pp. 673-678. doi : 10.1016/j.crma.2004.09.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.021/

[1] M. Bhardwaj; K. Pierson; G. Reese; T. Walsh; D. Day; K. Alvin; J. Peery; C. Farhat; M. Lesoinne Salinas: A scalable software for high-performance structural and solid mechanics simulations, Proceedings of the IEEE/ACM SC2002 Conference, Baltimore, MD, November 16–22, 2002

[2] M. Dryja; B.F. Smith; O.B. Widlund Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions, SIAM J. Numer. Anal., Volume 31 (1994) no. 6, pp. 1662-1694

[3] C. Farhat; M. Lesoinne; P. LeTallec; K. Pierson; D. Rixen FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method, Int. J. Numer. Methods Engrg., Volume 50 (2001) no. 7, pp. 1523-1544

[4] A. Klawonn; O.B. Widlund; M. Dryja Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal., Volume 40 (2002) no. 1, pp. 159-179

[5] P. Monk Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2003

[6] J.-C. Nédélec Mixed finite elements in $R3$, Numer. Math., Volume 35 (1980), pp. 315-341

[7] A. Toselli, X. Vasseur, Dual-primal FETI algorithms for edge element approximations: two-dimensional h and p finite elements on shape-regular meshes, Tech. Report 04-01, Seminar for Applied Mathematics, ETH Zürich, 2004, SIAM J. Numer. Anal., in press

Cited by Sources:

Articles of potential interest

A GenEO Domain Decomposition method for Saddle Point problems

Frédéric Nataf; Pierre-Henri Tournier

C. R. Méca (2023)

Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method

Nicole Spillane; Victorita Dolean; Patrice Hauret; ...

C. R. Math (2013)

Un algorithme de Gradient Conjugué Projeté préconditionné pour la résolution de problèmes unilatéraux

Nicolas Tardieu; Fabien Youbissi; Eric Chamberland

C. R. Méca (2008)