[Law of iterated logarithm for additive regression model components.]
In the setting of the additive model of the regression function, we study the iterated logarithm law for this model components pertaining with the marginal integration estimation method. Our results are stated in the i.i.d. random vectors framework.
Dans le cadre des modèles additifs de régression, cette Note établit la loi du logarithme itéré pour les estimateurs des composantes additives obtenues par la méthode d'intégration marginale. Nos résultats sont établis dans le cas de vecteurs aléatoires indépendants et identiquement distribués.
Accepted:
Published online:
Mohammed Debbarh 1
@article{CRMATH_2004__339_10_717_0, author = {Mohammed Debbarh}, title = {Loi du logarithme it\'er\'e pour les composantes du mod\`ele additif de r\'egression}, journal = {Comptes Rendus. Math\'ematique}, pages = {717--720}, publisher = {Elsevier}, volume = {339}, number = {10}, year = {2004}, doi = {10.1016/j.crma.2004.09.028}, language = {fr}, }
Mohammed Debbarh. Loi du logarithme itéré pour les composantes du modèle additif de régression. Comptes Rendus. Mathématique, Volume 339 (2004) no. 10, pp. 717-720. doi : 10.1016/j.crma.2004.09.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.028/
[1] Additive time series: the kernel integration method, Math. Methods Statist., Volume 9 (1999), pp. 358-375
[2] Laws of iterated logarithm for nonparametric estimators, Z. Wahrsch. verw. Gebiete, Volume 59 (1981), pp. 47-61
[3] Generalized Additive Models, Chapman and Hall, London, 1990
[4] A kernel method of estimating structured nonparametric regression based on marginal integration, Biometrika, Volume 82 (1995), pp. 93-100
[5] Kernel estimation of partial means, Econometric Theory, Volume 10 (1994), pp. 233-253
[6] Optimal global rates of convergences for non parametric regression, Ann. Statist., Volume 10 (1982), pp. 1040-1053
[7] Additive regression and other nonparametric models, Ann. Statist., Volume 13 (1985), pp. 698-705
[8] Nonparametric identification of nonlinear time series: projections, J. Amer. Statist. Assoc., Volume 89 (1994), pp. 1398-1409
[9] A remark on the approximation of the sample df in the multidimentional case, Period. Math. Hungar., Volume 8 (1977), pp. 53-55
Cited by Sources:
Comments - Policy