In this Note, we introduce the Fourier Singular Complement Method, for solving Maxwell equations in a 3D prismatic domain. The numerical implementation of this method provides a continuous approximation of the electromagnetic field. It can be applied to the computation of propagating and evanescent modes in prismatic stub filters, thus generalizing 2D approaches.
Dans cette Note, nous introduisons la Méthode du Complément Singulier avec Fourier, pour résoudre les équations de Maxwell dans des domaines prismatiques tridimensionnels. La mise en œuvre numérique de cette méthode permet de calculer une approximation continue du champ électromagnétique. Elle peut être appliquée à la détermination des modes propagatifs ou bloquants dans un filtre à stubs prismatique, ce qui constitue une généralisation des méthodes applicables en domaine bidimensionnel.
Accepted:
Published online:
Patrick Ciarlet 1; Emmanuelle Garcia 1; Jun Zou 2
@article{CRMATH_2004__339_10_721_0, author = {Patrick Ciarlet and Emmanuelle Garcia and Jun Zou}, title = {Solving {Maxwell} equations in {3D} prismatic domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {721--726}, publisher = {Elsevier}, volume = {339}, number = {10}, year = {2004}, doi = {10.1016/j.crma.2004.09.032}, language = {en}, }
Patrick Ciarlet; Emmanuelle Garcia; Jun Zou. Solving Maxwell equations in 3D prismatic domains. Comptes Rendus. Mathématique, Volume 339 (2004) no. 10, pp. 721-726. doi : 10.1016/j.crma.2004.09.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.032/
[1] Solution of the time-dependent Maxwell equations with charges in a two-dimensional singular domain, C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000), pp. 391-396
[2] Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domain: The Singular Complement Method, J. Comput. Phys., Volume 161 (2000), pp. 218-249
[3] On a finite element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., Volume 109 (1993), pp. 222-237
[4] Spectral element discretization of the Maxwell equations, Math. Comp., Volume 68 (1999), pp. 1497-1520
[5] Maxwell operator in regions with nonsmooth boundaries, Sib. Math. J., Volume 28 (1987), pp. 12-24
[6] P. Ciarlet, Jr., Augmented formulations for solving Maxwell equations, Comput. Methods Appl. Mech. Engrg., in press
[7] P. Ciarlet, Jr., B. Jung, S. Kaddouri, S. Labrunie, J. Zou, The Fourier Singular Complement Method for the Poisson problem. Part I: prismatic domains, Numer. Math., submitted for publication
[8] E. Garcia, PhD Thesis, Paris 6 University, France, 2002 (in French)
[9] Space–time regularity of the solution to Maxwell's equations in non-convex domains, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 293-298
[10] A singular field method for Maxwell's equations: numerical aspects for 2D magnetostatics, SIAM J. Appl. Math., Volume 40 (2002), pp. 1021-1040
[11] E. Jamelot, Nodal finite element methods for Maxwell's equations, C. R. Acad. Sci. Paris, Ser. I, in press
Cited by Sources:
Comments - Policy