Comptes Rendus
Dynamical Systems
On a theorem of Philip Hartman
Comptes Rendus. Mathématique, Volume 339 (2004) no. 11, pp. 781-786.

We generalize Hartman's C1 linearization theorem for local contractions and explain how to simplify its proof.

Nous généralisons le théorème de linéarisation C1 des contractions locales dû à Hartman et expliquons comment en simplifier la démonstration.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.10.010
Brahim Abbaci 1

1 Universite des sciences et de la technologie Houari Boumédienne, faculté de mathématiques, BP 32, EL ALIA Bab Ezzouar, 16111 Alger, Algeria
@article{CRMATH_2004__339_11_781_0,
     author = {Brahim Abbaci},
     title = {On a theorem of {Philip} {Hartman}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {781--786},
     publisher = {Elsevier},
     volume = {339},
     number = {11},
     year = {2004},
     doi = {10.1016/j.crma.2004.10.010},
     language = {en},
}
TY  - JOUR
AU  - Brahim Abbaci
TI  - On a theorem of Philip Hartman
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 781
EP  - 786
VL  - 339
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2004.10.010
LA  - en
ID  - CRMATH_2004__339_11_781_0
ER  - 
%0 Journal Article
%A Brahim Abbaci
%T On a theorem of Philip Hartman
%J Comptes Rendus. Mathématique
%D 2004
%P 781-786
%V 339
%N 11
%I Elsevier
%R 10.1016/j.crma.2004.10.010
%G en
%F CRMATH_2004__339_11_781_0
Brahim Abbaci. On a theorem of Philip Hartman. Comptes Rendus. Mathématique, Volume 339 (2004) no. 11, pp. 781-786. doi : 10.1016/j.crma.2004.10.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.10.010/

[1] B. Abbaci, Variétés invariantes et applications, Thèse, Université Paris 7, 2001

[2] B. Abbaci, A generalization of a theorem by Hartman and some applications, in preparation

[3] M. Chaperon Variétés stables et formes normales, C. R. Acad. Sci. Paris, Ser. I, Volume 317 (1993), pp. 87-92

[4] M. Chaperon Invariant manifolds revisited, Proc. Steklov Instit., Volume 236 (2002), pp. 415-433

[5] M. Chaperon, Stable manifolds and the Perron–Irwin method, in: Ergodic Theory and Dynamical Systems in memory of Michael R. Herman, in press

[6] R. De La Llave; C.E. Wayne On Irwin's proof of the pseudo-stable manifold theorem, Math. Z., Volume 219 (1995), pp. 301-321

[7] P. Hartman On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mex., Volume 5 (1960), pp. 220-241

Cited by Sources:

Comments - Policy


Articles of potential interest

An invertible contraction that is not C1-linearizable

Hildebrando M. Rodrigues; J. Solà-Morales

C. R. Math (2005)


Extension of invariant manifolds and applications

Brahim Abbaci

C. R. Math (2005)


Linearization of germs of hyperbolic vector fields

Patrick Bonckaert; Vincent Naudot; Jiazhong Yang

C. R. Math (2003)