In this Note, we give uniform elliptic estimates (uniform in ɛ) for some elliptic problems written in a periodic porous medium (of period ɛ) in spaces. The domain is obtained by removing a grid of holes of size ɛ from a smooth domain ω. In particular, we study the Dirichlet problem, the projection operator onto divergence-free vector fields as well as the Stokes operator. We also give estimates for the problem .
Dans cette Note, nous présentons des estimations uniformes en ɛ pour des problèmes elliptiques écrits dans un milieu poreux. Le domaine est un domaine perforé obtenu aprés l'elimination de trous de largeure ɛ. Nous étudions en particulier le problème de Dirichlet, l'opérateur de projection sur les vecteurs de divergence nulle, et l'opérateur de Stokes. Nous donnons aussi des estimations sur le problème .
Accepted:
Published online:
Nader Masmoudi 1, 2
@article{CRMATH_2004__339_12_849_0, author = {Nader Masmoudi}, title = {Some uniform elliptic estimates in a porous medium}, journal = {Comptes Rendus. Math\'ematique}, pages = {849--854}, publisher = {Elsevier}, volume = {339}, number = {12}, year = {2004}, doi = {10.1016/j.crma.2004.10.007}, language = {en}, }
Nader Masmoudi. Some uniform elliptic estimates in a porous medium. Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 849-854. doi : 10.1016/j.crma.2004.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.10.007/
[1] Compactness methods in the theory of homogenization, Commun. Pure Appl. Math., Volume 40 (1987) no. 6, pp. 803-847
[2] bounds on singular integrals in homogenization, Commun. Pure Appl. Math., Volume 44 (1991) no. 8–9, pp. 897-910
[3] Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978
[4] An Introduction to the Mathematical Theory of the Navier–Stokes equations. Vol. I, Linearized Steady Problems, Springer-Verlag, New York, 1994
[5] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994 (Translated from the Russian by G.A. Yosifian)
[6] N. Masmoudi, Uniform estimates for some elliptic problems in a porous medium, 2004, in preparation
[7] An estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa, Volume 17 (1963) no. 3, pp. 189-206
[8] Nonhomogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980
Cited by Sources:
Comments - Policy