Comptes Rendus
Partial Differential Equations
Some uniform elliptic estimates in a porous medium
Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 849-854.

In this Note, we give uniform elliptic estimates (uniform in ɛ) for some elliptic problems written in a periodic porous medium (of period ɛ) in Lp spaces. The domain ωɛ is obtained by removing a grid of holes of size ɛ from a smooth domain ω. In particular, we study the Dirichlet problem, the projection operator onto divergence-free vector fields as well as the Stokes operator. We also give estimates for the problem divv=f.

Dans cette Note, nous présentons des estimations uniformes en ɛ pour des problèmes elliptiques écrits dans un milieu poreux. Le domaine ωɛ est un domaine perforé obtenu aprés l'elimination de trous de largeure ɛ. Nous étudions en particulier le problème de Dirichlet, l'opérateur de projection sur les vecteurs de divergence nulle, et l'opérateur de Stokes. Nous donnons aussi des estimations sur le problème divv=f.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.10.007
Nader Masmoudi 1, 2

1 Courant Institute of Mathematical Sciences, New York University, Warren Weaver Hall, 251, Mercer Street, New York, NY 10012-1185, USA
2 Ceremade, UMR CNRS 7534, université de Paris IX, place du Maréchal DeLattre de Tassigny, 75775 Paris cedex 16, France
@article{CRMATH_2004__339_12_849_0,
     author = {Nader Masmoudi},
     title = {Some uniform elliptic estimates in a porous medium},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {849--854},
     publisher = {Elsevier},
     volume = {339},
     number = {12},
     year = {2004},
     doi = {10.1016/j.crma.2004.10.007},
     language = {en},
}
TY  - JOUR
AU  - Nader Masmoudi
TI  - Some uniform elliptic estimates in a porous medium
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 849
EP  - 854
VL  - 339
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2004.10.007
LA  - en
ID  - CRMATH_2004__339_12_849_0
ER  - 
%0 Journal Article
%A Nader Masmoudi
%T Some uniform elliptic estimates in a porous medium
%J Comptes Rendus. Mathématique
%D 2004
%P 849-854
%V 339
%N 12
%I Elsevier
%R 10.1016/j.crma.2004.10.007
%G en
%F CRMATH_2004__339_12_849_0
Nader Masmoudi. Some uniform elliptic estimates in a porous medium. Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 849-854. doi : 10.1016/j.crma.2004.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.10.007/

[1] M. Avellaneda; F.-H. Lin Compactness methods in the theory of homogenization, Commun. Pure Appl. Math., Volume 40 (1987) no. 6, pp. 803-847

[2] M. Avellaneda; F.-H. Lin Lp bounds on singular integrals in homogenization, Commun. Pure Appl. Math., Volume 44 (1991) no. 8–9, pp. 897-910

[3] A. Bensoussan; J.-L. Lions; G. Papanicolaou Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978

[4] G.P. Galdi An Introduction to the Mathematical Theory of the Navier–Stokes equations. Vol. I, Linearized Steady Problems, Springer-Verlag, New York, 1994

[5] V.V. Jikov; S.M. Kozlov; O.A. Oleı̆nik Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994 (Translated from the Russian by G.A. Yosifian)

[6] N. Masmoudi, Uniform estimates for some elliptic problems in a porous medium, 2004, in preparation

[7] N.G. Meyers An Lp estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa, Volume 17 (1963) no. 3, pp. 189-206

[8] E. Sánchez-Palencia Nonhomogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980

Cited by Sources:

Comments - Policy