We prove an existence result of weak solutions for an interaction problem between an elastic structure and a compressible fluid in three space dimensions. Solutions are defined as long as there is no collision and as long as conditions of non-interpenetration and of preservation of orientation are satisfied by the displacement field of the structure.
Nous présentons ici un résultat d'existence de solutions faibles pour un problème d'interaction entre une structure élastique et un fluide compressible en dimension trois. Les solutions sont définies tant qu'il n'y pas de chocs et tant que le déplacement de la structure vérifie des conditions de non-interpénétration et de préservation de l'orientation.
Accepted:
Published online:
Muriel Boulakia 1
@article{CRMATH_2005__340_2_113_0, author = {Muriel Boulakia}, title = {Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid}, journal = {Comptes Rendus. Math\'ematique}, pages = {113--118}, publisher = {Elsevier}, volume = {340}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2004.11.003}, language = {en}, }
TY - JOUR AU - Muriel Boulakia TI - Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid JO - Comptes Rendus. Mathématique PY - 2005 SP - 113 EP - 118 VL - 340 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2004.11.003 LA - en ID - CRMATH_2005__340_2_113_0 ER -
Muriel Boulakia. Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid. Comptes Rendus. Mathématique, Volume 340 (2005) no. 2, pp. 113-118. doi : 10.1016/j.crma.2004.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.003/
[1] M. Boulakia, Modélisation et analyse mathématique de problèmes d'interaction fluide–structure, Thesis, université de Versailles, 2004
[2] On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, Commun. Partial Differential Equations, Volume 25 (2000) no. 7–8, pp. 1399-1413
[3] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547
[4] On the motion of rigid bodies in a viscous compressible fluid, Arch. Rational Mech. Anal., Volume 167 (2003) no. 4, pp. 281-308
[5] On the existence of globally defined weak solutions to the Navier–Stokes equations, J. Math. Fluid Mech., Volume 3 (2001) no. 4, pp. 358-392
[6] Fluid–structure interaction: analysis of a 3-D compressible model, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 17 (2000) no. 6, pp. 753-777
[7] Mathematical Topics in Fluid Mechanics, Oxford Science Publications, 1996
[8] Bornes sur la densité pour les équations de Navier–Stokes compressibles isentropiques avec conditions aux limites de Dirichlet, C. R. Acad. Sci. Paris, Ser. I, Volume 328 (1999) no. 8, pp. 659-662
Cited by Sources:
Comments - Policy