Comptes Rendus
Mathematical Problems in Mechanics
Incompressible nonlinearly elastic thin membranes
[Membranes minces non linéairement élastiques incompressibles]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 75-80.

Des modèles de membranes minces non linéairement élastiques sont obtenus pour des matériaux hyperélastiques incompressibles via des arguments de Γ-convergence. Nous obtenons une représentation intégrale de l'énergie bidimensionnelle limite grâce à un résultat de relaxation de fonctionnelles singulières dû à Ben Belgacem [ESAIM Control Optim. Calc. Var. 5 (2000) 71–85 (électronique)].

Nonlinearly elastic thin membrane models are derived for hyperelastic incompressible materials using Γ-convergence arguments. We obtain an integral representation of the limit two-dimensional energy owing to a result of singular functionals relaxation due to Ben Belgacem [ESAIM Control Optim. Calc. Var. 5 (2000) 71–85 (electronic)].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.11.005

Karim Trabelsi 1

1 Laboratoire Jacques-Louis Lions, université Pierre et Marie Curie, boîte courrier 187, 75252 Paris cedex 05, France
@article{CRMATH_2005__340_1_75_0,
     author = {Karim Trabelsi},
     title = {Incompressible nonlinearly elastic thin membranes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {75--80},
     publisher = {Elsevier},
     volume = {340},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crma.2004.11.005},
     language = {en},
}
TY  - JOUR
AU  - Karim Trabelsi
TI  - Incompressible nonlinearly elastic thin membranes
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 75
EP  - 80
VL  - 340
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2004.11.005
LA  - en
ID  - CRMATH_2005__340_1_75_0
ER  - 
%0 Journal Article
%A Karim Trabelsi
%T Incompressible nonlinearly elastic thin membranes
%J Comptes Rendus. Mathématique
%D 2005
%P 75-80
%V 340
%N 1
%I Elsevier
%R 10.1016/j.crma.2004.11.005
%G en
%F CRMATH_2005__340_1_75_0
Karim Trabelsi. Incompressible nonlinearly elastic thin membranes. Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 75-80. doi : 10.1016/j.crma.2004.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.005/

[1] E. Acerbi; G. Buttazzo; D. Percivale A variational definition of the strain energy for an elastic string, J. Elasticity, Volume 25 (1991) no. 2, pp. 137-148

[2] E. Acerbi; N. Fusco Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal., Volume 86 (1984) no. 2, pp. 125-145

[3] H. Ben Belgacem, Modélisation de structures minces en élasticité non linaire, PhD thesis, Université Pierre et Marie Curie, Paris, 1996

[4] H. Ben Belgacem Une méthode de Γ-convergence pour un modèle de membrane non linéaire, C. R. Acad. Sci. Paris, Ser. I, Volume 324 (1997) no. 7, pp. 845-849

[5] H. Ben Belgacem Relaxation of singular functionals defined on Sobolev spaces, ESAIM Control Optim. Calc. Var., Volume 5 (2000), pp. 71-85 (electronic)

[6] P.G. Ciarlet, Mathematical Elasticity. Vol. I, Three-Dimensional Elasticity, Stud. Math. Appl., vol. 20

[7] G. Dal Maso An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser Boston, Boston, MA, 1993

[8] E. De Giorgi; T. Franzoni Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), Volume 58 (1975) no. 6, pp. 842-850

[9] I. Fonseca The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pures Appl., Volume 67 (1988) no. 2, pp. 175-195

[10] R.V. Kohn; G. Strang Optimal design and relaxation of variational problems. II, Commun. Pure Appl. Math., Volume 39 (1986) no. 2, pp. 139-182

[11] H. Le Dret; A. Raoult The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995) no. 6, pp. 549-578

[12] K. Trabelsi Non-existence of minimizers for a nonlinear membrane plate under compression, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 8, pp. 553-558

[13] K. Trabelsi Nonlinear thin plate models for a family of Ogden materials, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 12, pp. 819-824

[14] K. Trabelsi, Incompressible nonlinear membranes, preprint, 2004

  • André M. Sonnet; Epifanio G. Virga Model for a Photoresponsive Nematic Elastomer Ribbon, Journal of Elasticity, Volume 155 (2024) no. 1-5, p. 327 | DOI:10.1007/s10659-022-09959-4
  • M. Mohammadi; E. Mohseni; M. Moeinfar Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory, Applied Mathematical Modelling, Volume 69 (2019), p. 47 | DOI:10.1016/j.apm.2018.11.047
  • Yuanyou Li; Hui-Hui Dai A Consistent Dynamic Finite-Strain Plate Theory for Incompressible Hyperelastic Materials, Generalized Models and Non-classical Approaches in Complex Materials 1, Volume 89 (2018), p. 487 | DOI:10.1007/978-3-319-72440-9_25
  • Sergio Conti; Georg Dolzmann An adaptive relaxation algorithm for multiscale problems and application to nematic elastomers, Journal of the Mechanics and Physics of Solids, Volume 113 (2018), p. 126 | DOI:10.1016/j.jmps.2018.02.001
  • Jiong Wang; Zilong Song; Hui-Hui Dai On a consistent finite-strain plate theory for incompressible hyperelastic materials, International Journal of Solids and Structures, Volume 78-79 (2016), p. 101 | DOI:10.1016/j.ijsolstr.2015.09.013
  • Hui Li; Milena Chermisi The von Kármán theory for incompressible elastic shells, Calculus of Variations and Partial Differential Equations, Volume 48 (2013) no. 1-2, p. 185 | DOI:10.1007/s00526-012-0549-5
  • Hui Li The Kirchhoff theory for elastic pre-strained shells, Nonlinear Analysis: Theory, Methods Applications, Volume 78 (2013), p. 1 | DOI:10.1016/j.na.2012.07.035
  • Sergio Conti; Georg Dolzmann Γ-convergence for incompressible elastic plates, Calculus of Variations and Partial Differential Equations, Volume 34 (2009) no. 4, p. 531 | DOI:10.1007/s00526-008-0194-1
  • KARIM TRABELSI MODELING OF A MEMBRANE FOR NONLINEARLY ELASTIC INCOMPRESSIBLE MATERIALS VIA GAMMA-CONVERGENCE, Analysis and Applications, Volume 04 (2006) no. 01, p. 31 | DOI:10.1142/s0219530506000693
  • Sergio Conti; Georg Dolzmann Derivation of Elastic Theories for Thin Sheets and the Constraint of Incompressibility, Analysis, Modeling and Simulation of Multiscale Problems (2006), p. 225 | DOI:10.1007/3-540-35657-6_9

Cité par 10 documents. Sources : Crossref

Commentaires - Politique