[Membranes minces non linéairement élastiques incompressibles]
Des modèles de membranes minces non linéairement élastiques sont obtenus pour des matériaux hyperélastiques incompressibles via des arguments de Γ-convergence. Nous obtenons une représentation intégrale de l'énergie bidimensionnelle limite grâce à un résultat de relaxation de fonctionnelles singulières dû à Ben Belgacem [ESAIM Control Optim. Calc. Var. 5 (2000) 71–85 (électronique)].
Nonlinearly elastic thin membrane models are derived for hyperelastic incompressible materials using Γ-convergence arguments. We obtain an integral representation of the limit two-dimensional energy owing to a result of singular functionals relaxation due to Ben Belgacem [ESAIM Control Optim. Calc. Var. 5 (2000) 71–85 (electronic)].
Accepté le :
Publié le :
Karim Trabelsi 1
@article{CRMATH_2005__340_1_75_0, author = {Karim Trabelsi}, title = {Incompressible nonlinearly elastic thin membranes}, journal = {Comptes Rendus. Math\'ematique}, pages = {75--80}, publisher = {Elsevier}, volume = {340}, number = {1}, year = {2005}, doi = {10.1016/j.crma.2004.11.005}, language = {en}, }
Karim Trabelsi. Incompressible nonlinearly elastic thin membranes. Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 75-80. doi : 10.1016/j.crma.2004.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.005/
[1] A variational definition of the strain energy for an elastic string, J. Elasticity, Volume 25 (1991) no. 2, pp. 137-148
[2] Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal., Volume 86 (1984) no. 2, pp. 125-145
[3] H. Ben Belgacem, Modélisation de structures minces en élasticité non linaire, PhD thesis, Université Pierre et Marie Curie, Paris, 1996
[4] Une méthode de Γ-convergence pour un modèle de membrane non linéaire, C. R. Acad. Sci. Paris, Ser. I, Volume 324 (1997) no. 7, pp. 845-849
[5] Relaxation of singular functionals defined on Sobolev spaces, ESAIM Control Optim. Calc. Var., Volume 5 (2000), pp. 71-85 (electronic)
[6] P.G. Ciarlet, Mathematical Elasticity. Vol. I, Three-Dimensional Elasticity, Stud. Math. Appl., vol. 20
[7] An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser Boston, Boston, MA, 1993
[8] Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), Volume 58 (1975) no. 6, pp. 842-850
[9] The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pures Appl., Volume 67 (1988) no. 2, pp. 175-195
[10] Optimal design and relaxation of variational problems. II, Commun. Pure Appl. Math., Volume 39 (1986) no. 2, pp. 139-182
[11] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995) no. 6, pp. 549-578
[12] Non-existence of minimizers for a nonlinear membrane plate under compression, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 8, pp. 553-558
[13] Nonlinear thin plate models for a family of Ogden materials, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 12, pp. 819-824
[14] K. Trabelsi, Incompressible nonlinear membranes, preprint, 2004
- Model for a Photoresponsive Nematic Elastomer Ribbon, Journal of Elasticity, Volume 155 (2024) no. 1-5, p. 327 | DOI:10.1007/s10659-022-09959-4
- Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory, Applied Mathematical Modelling, Volume 69 (2019), p. 47 | DOI:10.1016/j.apm.2018.11.047
- A Consistent Dynamic Finite-Strain Plate Theory for Incompressible Hyperelastic Materials, Generalized Models and Non-classical Approaches in Complex Materials 1, Volume 89 (2018), p. 487 | DOI:10.1007/978-3-319-72440-9_25
- An adaptive relaxation algorithm for multiscale problems and application to nematic elastomers, Journal of the Mechanics and Physics of Solids, Volume 113 (2018), p. 126 | DOI:10.1016/j.jmps.2018.02.001
- On a consistent finite-strain plate theory for incompressible hyperelastic materials, International Journal of Solids and Structures, Volume 78-79 (2016), p. 101 | DOI:10.1016/j.ijsolstr.2015.09.013
- The von Kármán theory for incompressible elastic shells, Calculus of Variations and Partial Differential Equations, Volume 48 (2013) no. 1-2, p. 185 | DOI:10.1007/s00526-012-0549-5
- The Kirchhoff theory for elastic pre-strained shells, Nonlinear Analysis: Theory, Methods Applications, Volume 78 (2013), p. 1 | DOI:10.1016/j.na.2012.07.035
- Γ-convergence for incompressible elastic plates, Calculus of Variations and Partial Differential Equations, Volume 34 (2009) no. 4, p. 531 | DOI:10.1007/s00526-008-0194-1
- MODELING OF A MEMBRANE FOR NONLINEARLY ELASTIC INCOMPRESSIBLE MATERIALS VIA GAMMA-CONVERGENCE, Analysis and Applications, Volume 04 (2006) no. 01, p. 31 | DOI:10.1142/s0219530506000693
- Derivation of Elastic Theories for Thin Sheets and the Constraint of Incompressibility, Analysis, Modeling and Simulation of Multiscale Problems (2006), p. 225 | DOI:10.1007/3-540-35657-6_9
Cité par 10 documents. Sources : Crossref
Commentaires - Politique