Nonlinearly elastic thin membrane models are derived for hyperelastic incompressible materials using Γ-convergence arguments. We obtain an integral representation of the limit two-dimensional energy owing to a result of singular functionals relaxation due to Ben Belgacem [ESAIM Control Optim. Calc. Var. 5 (2000) 71–85 (electronic)].
Des modèles de membranes minces non linéairement élastiques sont obtenus pour des matériaux hyperélastiques incompressibles via des arguments de Γ-convergence. Nous obtenons une représentation intégrale de l'énergie bidimensionnelle limite grâce à un résultat de relaxation de fonctionnelles singulières dû à Ben Belgacem [ESAIM Control Optim. Calc. Var. 5 (2000) 71–85 (électronique)].
Accepted:
Published online:
Karim Trabelsi 1
@article{CRMATH_2005__340_1_75_0, author = {Karim Trabelsi}, title = {Incompressible nonlinearly elastic thin membranes}, journal = {Comptes Rendus. Math\'ematique}, pages = {75--80}, publisher = {Elsevier}, volume = {340}, number = {1}, year = {2005}, doi = {10.1016/j.crma.2004.11.005}, language = {en}, }
Karim Trabelsi. Incompressible nonlinearly elastic thin membranes. Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 75-80. doi : 10.1016/j.crma.2004.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.005/
[1] A variational definition of the strain energy for an elastic string, J. Elasticity, Volume 25 (1991) no. 2, pp. 137-148
[2] Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal., Volume 86 (1984) no. 2, pp. 125-145
[3] H. Ben Belgacem, Modélisation de structures minces en élasticité non linaire, PhD thesis, Université Pierre et Marie Curie, Paris, 1996
[4] Une méthode de Γ-convergence pour un modèle de membrane non linéaire, C. R. Acad. Sci. Paris, Ser. I, Volume 324 (1997) no. 7, pp. 845-849
[5] Relaxation of singular functionals defined on Sobolev spaces, ESAIM Control Optim. Calc. Var., Volume 5 (2000), pp. 71-85 (electronic)
[6] P.G. Ciarlet, Mathematical Elasticity. Vol. I, Three-Dimensional Elasticity, Stud. Math. Appl., vol. 20
[7] An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser Boston, Boston, MA, 1993
[8] Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), Volume 58 (1975) no. 6, pp. 842-850
[9] The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pures Appl., Volume 67 (1988) no. 2, pp. 175-195
[10] Optimal design and relaxation of variational problems. II, Commun. Pure Appl. Math., Volume 39 (1986) no. 2, pp. 139-182
[11] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995) no. 6, pp. 549-578
[12] Non-existence of minimizers for a nonlinear membrane plate under compression, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 8, pp. 553-558
[13] Nonlinear thin plate models for a family of Ogden materials, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 12, pp. 819-824
[14] K. Trabelsi, Incompressible nonlinear membranes, preprint, 2004
Cited by Sources:
Comments - Policy