[Curved ferromagnetic thin films]
We consider a thin curved ferromagnetic film not submitted to an external magnetic field. The behavior of the film is described by an energy depending on the magnetization of the film verifying the saturation constraint. The energy is composed of an induced magnetostatic energy and an energy term with density including the exchange energy and the anisotropic energy. We study the behavior of this energy when the thickness of the curved film goes to zero. We show with Γ-convergence arguments that the minimizers of the free energy converge to the minimizers of a local energy depending on a two-dimensional magnetization.
On considère un film courbé mince ferromagnétique non soumis à un champ magnétique externe. Le comportement du film est décrit par une énergie dépendant de la magnétisation du film vérifiant la contrainte de saturation. Cette énergie se compose d'une partie d'énergie magnétostatique induite et d'un terme d'énergie ayant comme densité une fonction, comprenant l'énergie d'échange et l'énergie anisotrope. Nous étudions le comportement de cette énergie quand l'épaisseur du film courbé tend vers zéro. Nous prouvons avec des arguments de Γ-convergence que les minimiseurs de l'énergie totale convergent vers les minimiseurs d'une énergie locale dépendant d'une magnétisation bidimensionnelle.
Accepted:
Published online:
Hamdi Zorgati 1, 2
@article{CRMATH_2005__340_1_81_0, author = {Hamdi Zorgati}, title = {Films courb\'es minces ferromagn\'etiques}, journal = {Comptes Rendus. Math\'ematique}, pages = {81--86}, publisher = {Elsevier}, volume = {340}, number = {1}, year = {2005}, doi = {10.1016/j.crma.2004.10.022}, language = {fr}, }
Hamdi Zorgati. Films courbés minces ferromagnétiques. Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 81-86. doi : 10.1016/j.crma.2004.10.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.10.022/
[1] 3D-2D Asymptotic analysis for micromagnetic thin films, ESAIM: COCV, Volume 6 (2001), pp. 489-498
[2] Micromagnetics, Wiley, New York, 1963
[3] Minima absolus pour des énergies ferromagnétiques, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2000), pp. 497-500
[4] Manifold constrained variational problems, Calc. Var., Volume 9 (1999), pp. 185-206
[5] An Introduction to Γ-Convergence, Progr. in Nonlinear Differential Equations Appl., Birkhäuser, 1993
[6] Sulla convergenza di alcune successioni di integrali del tipo dell'area, Rend. Mat. (IV) (8) (1975), pp. 277-294
[7] Su un tipo di convergenza variazionale, Atti. Accad. Naz. Lincei, Volume 58 (1975), pp. 842-850
[8] Energy minimizers for large ferromagnetic bodies, Arch. Rational Mech. Anal., Volume 125 (1993), pp. 99-143
[9] Micromagnetics of very thin films, Proc. Roy. Soc. London Ser. A, Volume 453 (1997), pp. 213-223
[10] On the theory of the dispertion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion, Volume 8 (1935), pp. 153-169
[11] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995) no. 6, pp. 549-578
[12] The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci., Volume 6 (1996) no. 1, pp. 59-84
Cited by Sources:
Comments - Policy