Comptes Rendus
Probability Theory
Tail of the stationary solution of the stochastic equation Yn+1=anYn+bn with Markovian coefficients
Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 55-58.

In this Note, we deal with the real stochastic difference equation Yn+1=anYn+bn, nZ, where the sequence (an) is a finite state space Markov chain. By means of the renewal theory, we give a precise description of the situation where the tail of its stationary solution exhibits power law behavior.

On étudie la queue de la solution stationnaire de l'équation Yn+1=anYn+bn, nZ, où (an) est une chaîne de Markov à espace d'états fini. Par des méthodes de renouvellement, on donne une caractérisation détaillée du cas où la queue est polynômiale.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.11.018

Benoîte de Saporta 1

1 IRMAR, université de Rennes I, campus de Beaulieu, 35042 Rennes cedex, France
@article{CRMATH_2005__340_1_55_0,
     author = {Beno{\^\i}te de Saporta},
     title = {Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with {Markovian} coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {55--58},
     publisher = {Elsevier},
     volume = {340},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crma.2004.11.018},
     language = {en},
}
TY  - JOUR
AU  - Benoîte de Saporta
TI  - Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with Markovian coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 55
EP  - 58
VL  - 340
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2004.11.018
LA  - en
ID  - CRMATH_2005__340_1_55_0
ER  - 
%0 Journal Article
%A Benoîte de Saporta
%T Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with Markovian coefficients
%J Comptes Rendus. Mathématique
%D 2005
%P 55-58
%V 340
%N 1
%I Elsevier
%R 10.1016/j.crma.2004.11.018
%G en
%F CRMATH_2005__340_1_55_0
Benoîte de Saporta. Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with Markovian coefficients. Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 55-58. doi : 10.1016/j.crma.2004.11.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.018/

[1] S. Asmussen Applied Probability and Queues, Wiley, Chichester, 1987

[2] A. Brandt The stochastic equation Yn+1=AnYn+Bn with stationary coefficients, Adv. Appl. Probab., Volume 18 (1986), pp. 211-220

[3] C.M. Goldie Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab., Volume 1 (1991), pp. 26-166

[4] A.K. Grincevičius Products of random affine transformations, Lithuanian Math. J., Volume 20 (1980), pp. 279-282

[5] J.D. Hamilton Estimation, inference and forecasting of time series subject to change in regime (G. Maddala; C.R. Rao; D.H. Vinod, eds.), Handbook of Statistics, vol. 11, 1993, pp. 230-260

[6] H. Kesten Random difference equations and renewal theory for products of random matrices, Acta Math., Volume 131 (1973), pp. 207-248

[7] H. Kesten Renewal theory for functionals of a Markov chain with general state space, Ann. Probab., Volume 2 (1974), pp. 355-386

[8] C. Klüppelberg, S. Pergamenchtchikov, The tail of the stationary distribution of a random coefficient AR(q) model, preprint, 2002

[9] E. Le Page, Théorèmes de renouvellement pour les produits de matrices aléatoires. Equations aux différences aléatoires, Séminaires de probabilités de Rennes, 1983

[10] B. de Saporta Renewal theorem for a system of renewal equations, Ann. Inst. H. Poincare Probab. Statist., Volume 39 (2003), pp. 823-838

Cited by Sources:

Comments - Policy