In this Note, we deal with the real stochastic difference equation , , where the sequence is a finite state space Markov chain. By means of the renewal theory, we give a precise description of the situation where the tail of its stationary solution exhibits power law behavior.
On étudie la queue de la solution stationnaire de l'équation , , où est une chaîne de Markov à espace d'états fini. Par des méthodes de renouvellement, on donne une caractérisation détaillée du cas où la queue est polynômiale.
Accepted:
Published online:
Benoîte de Saporta 1
@article{CRMATH_2005__340_1_55_0, author = {Beno{\^\i}te de Saporta}, title = {Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with {Markovian} coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {55--58}, publisher = {Elsevier}, volume = {340}, number = {1}, year = {2005}, doi = {10.1016/j.crma.2004.11.018}, language = {en}, }
TY - JOUR AU - Benoîte de Saporta TI - Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with Markovian coefficients JO - Comptes Rendus. Mathématique PY - 2005 SP - 55 EP - 58 VL - 340 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2004.11.018 LA - en ID - CRMATH_2005__340_1_55_0 ER -
%0 Journal Article %A Benoîte de Saporta %T Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with Markovian coefficients %J Comptes Rendus. Mathématique %D 2005 %P 55-58 %V 340 %N 1 %I Elsevier %R 10.1016/j.crma.2004.11.018 %G en %F CRMATH_2005__340_1_55_0
Benoîte de Saporta. Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with Markovian coefficients. Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 55-58. doi : 10.1016/j.crma.2004.11.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.018/
[1] Applied Probability and Queues, Wiley, Chichester, 1987
[2] The stochastic equation with stationary coefficients, Adv. Appl. Probab., Volume 18 (1986), pp. 211-220
[3] Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab., Volume 1 (1991), pp. 26-166
[4] Products of random affine transformations, Lithuanian Math. J., Volume 20 (1980), pp. 279-282
[5] Estimation, inference and forecasting of time series subject to change in regime (G. Maddala; C.R. Rao; D.H. Vinod, eds.), Handbook of Statistics, vol. 11, 1993, pp. 230-260
[6] Random difference equations and renewal theory for products of random matrices, Acta Math., Volume 131 (1973), pp. 207-248
[7] Renewal theory for functionals of a Markov chain with general state space, Ann. Probab., Volume 2 (1974), pp. 355-386
[8] C. Klüppelberg, S. Pergamenchtchikov, The tail of the stationary distribution of a random coefficient AR(q) model, preprint, 2002
[9] E. Le Page, Théorèmes de renouvellement pour les produits de matrices aléatoires. Equations aux différences aléatoires, Séminaires de probabilités de Rennes, 1983
[10] Renewal theorem for a system of renewal equations, Ann. Inst. H. Poincare Probab. Statist., Volume 39 (2003), pp. 823-838
Cited by Sources:
Comments - Policy