In this Note we present several controllability results for nonlinear systems of the Navier–Stokes and Boussinesq kind. We discuss the existence of particular controls with a small number of degrees of freedom.
Dans cette Note on présente quelques résultats de contrôlabilité pour des systèmes non linéaires du type Navier–Stokes et Boussinesq. On analyse l'existence de contrôles particuliers avec un nombre petit de degrés de liberté.
Accepted:
Published online:
Enrique Fernández-Cara 1; Sergio Guerrero 1; Oleg Yurievich Imanuvilov 2; Jean-Pierre Puel 3
@article{CRMATH_2005__340_4_275_0, author = {Enrique Fern\'andez-Cara and Sergio Guerrero and Oleg Yurievich Imanuvilov and Jean-Pierre Puel}, title = {On the controllability of the {\protect\emph{N}-dimensional} {Navier{\textendash}Stokes} and {Boussinesq} systems with $ N-1$ scalar controls}, journal = {Comptes Rendus. Math\'ematique}, pages = {275--280}, publisher = {Elsevier}, volume = {340}, number = {4}, year = {2005}, doi = {10.1016/j.crma.2004.12.013}, language = {en}, }
TY - JOUR AU - Enrique Fernández-Cara AU - Sergio Guerrero AU - Oleg Yurievich Imanuvilov AU - Jean-Pierre Puel TI - On the controllability of the N-dimensional Navier–Stokes and Boussinesq systems with $ N-1$ scalar controls JO - Comptes Rendus. Mathématique PY - 2005 SP - 275 EP - 280 VL - 340 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2004.12.013 LA - en ID - CRMATH_2005__340_4_275_0 ER -
%0 Journal Article %A Enrique Fernández-Cara %A Sergio Guerrero %A Oleg Yurievich Imanuvilov %A Jean-Pierre Puel %T On the controllability of the N-dimensional Navier–Stokes and Boussinesq systems with $ N-1$ scalar controls %J Comptes Rendus. Mathématique %D 2005 %P 275-280 %V 340 %N 4 %I Elsevier %R 10.1016/j.crma.2004.12.013 %G en %F CRMATH_2005__340_4_275_0
Enrique Fernández-Cara; Sergio Guerrero; Oleg Yurievich Imanuvilov; Jean-Pierre Puel. On the controllability of the N-dimensional Navier–Stokes and Boussinesq systems with $ N-1$ scalar controls. Comptes Rendus. Mathématique, Volume 340 (2005) no. 4, pp. 275-280. doi : 10.1016/j.crma.2004.12.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.12.013/
[1] E. Fernández-Cara, S. Guerrero, O.Yu. Imanuvilov, J.P. Puel, Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl., in press
[2] Remarks on exact controllability for the Navier–Stokes equations, ESAIM Control Optim. Calc. Var., Volume 6 (2001), pp. 39-72
[3] Global Carleman estimates for weak elliptic non homogeneous Dirichlet problem, Int. Math. Res. Notices, Volume 16 (2003), pp. 883-913
[4] Carleman Estimate for a Parabolic Equation in a Sobolev Space of Negative Order and its Applications, Lecture Notes in Pure and Appl. Math., vol. 218, Dekker, New York, 2001
[5] A generic uniqueness result for the Stokes system and its control theoretical consequences (P. Marcellini; G. Talenti; E. Visentini, eds.), Partial Differential Equations and Applications, Lecture Notes in Pure and Appl. Math., vol. 177, Dekker, New York, 1996, pp. 221-235
Cited by Sources:
Comments - Policy