[La super-rigidité des réseaux irréductibles et un théorème de décomposition]
We propose general superrigidity results for actions of irreducible lattices on
Nous exposons des résultats de super-rigidité pour les actions de réseaux irréductibles en géométrie de Hadamard, singulière ou non. Une de nos motivations est de présenter une preuve élémentaire du théorème de super-rigidité de Margulis pour les réseaux uniformes dans les groupes algébriques semi-simples (non simples) ; nos méthodes s'appliquent cependant aux réseaux dans des produits de groupes complètement généraux. Notre preuve repose notamment sur un théorème de décomposition qui généralise le théorème de Lawson–Yau/Gromoll–Wolf aux dimensions infinies, ou plus précisément aux espaces
Accepté le :
Publié le :
Nicolas Monod 1
@article{CRMATH_2005__340_3_185_0, author = {Nicolas Monod}, title = {Superrigidity for irreducible lattices and geometric splitting}, journal = {Comptes Rendus. Math\'ematique}, pages = {185--190}, publisher = {Elsevier}, volume = {340}, number = {3}, year = {2005}, doi = {10.1016/j.crma.2004.12.023}, language = {en}, }
Nicolas Monod. Superrigidity for irreducible lattices and geometric splitting. Comptes Rendus. Mathématique, Volume 340 (2005) no. 3, pp. 185-190. doi : 10.1016/j.crma.2004.12.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.12.023/
[1] Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss., vol. 319, Springer, Berlin, 1999
[2] Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc., Volume 77 (1971), pp. 545-552
[3] Harmonic maps and rigidity theorems for spaces of nonpositive curvature, Commun. Anal. Geom., Volume 7 (1999) no. 4, pp. 681-694
[4] Compact manifolds of nonpositive curvature, J. Differential Geom., Volume 7 (1972), pp. 211-228
[5] Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than 1, Invent. Math., Volume 76 (1984) no. 1, pp. 93-120
[6] Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin, 1991
[7] N. Monod, Superrigidity for irreducible lattices and geometric splitting, Preprint, 2003
[8] N. Monod, Arithmeticity vs. non-linearity for irreducible lattices, Preprint, 2004
[9] A splitting theorem for spaces of nonpositive curvature, Invent. Math., Volume 79 (1985) no. 2, pp. 323-327
[10] On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic, Invent. Math., Volume 92 (1988) no. 2, pp. 255-306
- Arithmeticity vs. Nonlinearity for Irreducible Lattices, Geometriae Dedicata, Volume 112 (2005) no. 1, p. 225 | DOI:10.1007/s10711-004-6162-9
- Integrability of induction cocycles for Kac-Moody groups, Mathematische Annalen, Volume 333 (2005) no. 1, p. 29 | DOI:10.1007/s00208-005-0663-1
- Parabolic isometries of CAT(0) spaces and CAT(0) dimensions, Algebraic Geometric Topology, Volume 4 (2004) no. 2, p. 861 | DOI:10.2140/agt.2004.4.861
Cité par 3 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier