We generalize the classical Rayleigh–Faber–Krahn inequality to the case of the Dirichlet Laplacian with a drift. We also solve some optimization problems for the principal eigenvalue of the operator in a fixed domain with a control of the drift v in .
Nous généralisons l'inégalité classique de Rayleigh–Faber–Krahn au cas du laplacien Dirichlet avec un terme de transport. Nous résolvons également des problèmes d'optimisation pour la valeur propre principale de l'opérateur dans un domaine fixé et avec un contrôle sur le terme de transport v.
Published online:
François Hamel 1; Nikolai Nadirashvili 2; Emmanuel Russ 1
@article{CRMATH_2005__340_5_347_0, author = {Fran\c{c}ois Hamel and Nikolai Nadirashvili and Emmanuel Russ}, title = {An isoperimetric inequality for the principal eigenvalue of the {Laplacian} with drift}, journal = {Comptes Rendus. Math\'ematique}, pages = {347--352}, publisher = {Elsevier}, volume = {340}, number = {5}, year = {2005}, doi = {10.1016/j.crma.2005.01.012}, language = {en}, }
TY - JOUR AU - François Hamel AU - Nikolai Nadirashvili AU - Emmanuel Russ TI - An isoperimetric inequality for the principal eigenvalue of the Laplacian with drift JO - Comptes Rendus. Mathématique PY - 2005 SP - 347 EP - 352 VL - 340 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2005.01.012 LA - en ID - CRMATH_2005__340_5_347_0 ER -
%0 Journal Article %A François Hamel %A Nikolai Nadirashvili %A Emmanuel Russ %T An isoperimetric inequality for the principal eigenvalue of the Laplacian with drift %J Comptes Rendus. Mathématique %D 2005 %P 347-352 %V 340 %N 5 %I Elsevier %R 10.1016/j.crma.2005.01.012 %G en %F CRMATH_2005__340_5_347_0
François Hamel; Nikolai Nadirashvili; Emmanuel Russ. An isoperimetric inequality for the principal eigenvalue of the Laplacian with drift. Comptes Rendus. Mathématique, Volume 340 (2005) no. 5, pp. 347-352. doi : 10.1016/j.crma.2005.01.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.01.012/
[1] A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. Math., Volume 135 (1992), pp. 601-628
[2] Isoperimetric bounds for higher eigenvalue ratios for the n-dimensional fixed membrane problem, Proc. Roy. Soc. Edinburgh Sect. A, Volume 123 (1993), pp. 977-985
[3] On Rayleigh's conjecture for the clamped plate and its generalization to three dimensions, Duke Math. J., Volume 78 (1995), pp. 1-17
[4] The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Commun. Pure Appl. Math., Volume 47 (1994), pp. 47-92
[5] Minimization of the third eigenvalue of the Dirichlet Laplacian, Proc. Roy. Soc. London Ser. A, Volume 456 (2000), pp. 985-996
[6] Isoperimetric inequalities and the gap between the first and second eigenvalues of an Euclidean domain, J. Geom. Anal., Volume 7 (1997), pp. 217-239
[7] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsberichte der mathematisch-physikalischen Klasse der Bauerischen Akademie der Wissenschaften zu München Jahrgang, 1923, pp. 169–172
[8] F. Hamel, N. Nadirashvili, E. Russ, A Faber–Krahn inequality with drift, Preprint
[9] Minimization problems for eigenvalues of the Laplacian, J. Evol. Eq., Volume 3 (2003), pp. 443-461
[10] Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann., Volume 94 (1925), pp. 97-100
[11] Über Minimaleigenschaft der Kugel in drei und mehr Dimensionen, Acta Commun. Univ. Tartu (Dorpat) A, Volume 9 (1926), pp. 1-44
[12] Bounds for the third membrane eigenvalue, J. Differential Equations, Volume 37 (1980), pp. 438-443
[13] Rayleigh's conjecture on the principal frequency of the clamped plate, Arch. Rational Mech. Anal., Volume 129 (1995), pp. 1-10
[14] The isoperimetric inequality, Bull. Amer. Math. Soc., Volume 84 (1978), pp. 1182-1238
[15] On the characteristic frequencies of a symmetric membrane, Math. Z., Volume 63 (1955), pp. 331-337
[16] On the eigenvalues of vibrating membranes, Proc. London Math. Soc., Volume 11 (1961) no. 3, pp. 100-105
[17] The Theory of Sound, Dover, New York, 1945 (republication of the 1894/1896 edition)
[18] Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal., Volume 3 (1954), pp. 343-356
[19] An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational Mech. Anal., Volume 5 (1956), pp. 633-636
Cited by Sources:
Comments - Policy