[Sur la non existence de schémas linéaires monotones pour certaines équations paraboliques linéaires]
Dans cette Note, nous présentons un résultat de non existence de schémas linéaires monotones avec un stencil fixé sur un maillage carré pour certaines équations paraboliques en dimension 2. Les équations paraboliques que l'on considère proviennent de modèles de diffusion anisotrope. Une conséquence du résultat est qu'il n'existe pas de schémas linéaires monotones à neuf points pour l'équation de la chaleur monodimensionnelle immergée dans le plan, avec une direction arbitraire. Nous présentons quelques applications : à l'équation de Fokker–Planck–Lorentz pour les électrons dans le contexte de la physique des plasmas ; Un schéma linéaire monotone pour l'équation de la chaleur hyperbolique monodimensionnelle et traité comme un problème bidimensionnel ne peut pas être consistant dans la limite de diffusion pour une direction arbitraire de propagation. On examine aussi le cas de l'équation de Landau.
In this Note, we present a result concerning the non existence of linear monotone schema with fixed stencil on regular meshes for some linear parabolic equation in two dimensions. The parabolic equations of interest arise from non isotropic diffusion modelling. A corollary is that no linear monotone 9 points-schemes can be designed for the one-dimensional heat equation emerged in the plane with an arbitrary direction of diffusion. Some applications of this result are provided: for the Fokker–Planck–Lorentz model for electrons in the context of plasma physics; all linear monotone scheme for the one-dimensional hyperbolic heat equation treated as a two-dimensional problem are not consistent in the diffusion limit for an arbitrary direction of propagation. We also examine the case of the Landau equation.
Accepté le :
Publié le :
Christophe Buet 1 ; Stéphane Cordier 2
@article{CRMATH_2005__340_5_399_0, author = {Christophe Buet and St\'ephane Cordier}, title = {On the non existence of monotone linear schema for some linear parabolic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {399--404}, publisher = {Elsevier}, volume = {340}, number = {5}, year = {2005}, doi = {10.1016/j.crma.2005.01.020}, language = {en}, }
TY - JOUR AU - Christophe Buet AU - Stéphane Cordier TI - On the non existence of monotone linear schema for some linear parabolic equations JO - Comptes Rendus. Mathématique PY - 2005 SP - 399 EP - 404 VL - 340 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2005.01.020 LA - en ID - CRMATH_2005__340_5_399_0 ER -
Christophe Buet; Stéphane Cordier. On the non existence of monotone linear schema for some linear parabolic equations. Comptes Rendus. Mathématique, Volume 340 (2005) no. 5, pp. 399-404. doi : 10.1016/j.crma.2005.01.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.01.020/
[1] Numerical analysis of conservative and entropy schemes for the FPLE, SIAM J. Numer. Anal., Volume 36 (1999), p. 953
[2] Fast algorithms for the Fokker–Planck equation, J. Comput. Phys., Volume 133 (1997), pp. 310-322
[3] An entropy scheme for the Fokker–Planck collision operator of plasma kinetic theory, Numer. Math., Volume 68 (1994) no. 2, pp. 239-262
[4] The Fokker–Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci., Volume 2 (1992) no. 2, pp. 167-182
[5] The asymptotics of collision operators for two species of particles of disparate masses, Math. Models Methods Appl. Sci., Volume 6 (1996) no. 3, pp. 405-436
[6] Finite Volume Methods, Handbook of Numerical Analysis, vol. VII, 2000, pp. 713-1020
[7] An asymptotic preserving well-balanced scheme for the hyperbolic heat equation, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 1-6
[8] Equations aux dérivées partielles et leurs approximations, Ellipses, 2004
Cité par Sources :
Commentaires - Politique