[Convergence en loi pour certaines fonctionnelles additives d'un processus stable symétrique sous une topologie forte]
We give some limit theorems of certain additive functionals for symmetric stable process of index
Nous donnons certains théorèmes limites pour certaines fonctionnelles additives d'un processus stable symétrique d'indice
Accepté le :
Publié le :
Mohamed Ait Ouahra 1
@article{CRMATH_2005__340_7_519_0, author = {Mohamed Ait Ouahra}, title = {Convergence in law for certain additive functionals of symmetric stable processes under strong topology}, journal = {Comptes Rendus. Math\'ematique}, pages = {519--524}, publisher = {Elsevier}, volume = {340}, number = {7}, year = {2005}, doi = {10.1016/j.crma.2005.02.013}, language = {en}, }
TY - JOUR AU - Mohamed Ait Ouahra TI - Convergence in law for certain additive functionals of symmetric stable processes under strong topology JO - Comptes Rendus. Mathématique PY - 2005 SP - 519 EP - 524 VL - 340 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2005.02.013 LA - en ID - CRMATH_2005__340_7_519_0 ER -
Mohamed Ait Ouahra. Convergence in law for certain additive functionals of symmetric stable processes under strong topology. Comptes Rendus. Mathématique, Volume 340 (2005) no. 7, pp. 519-524. doi : 10.1016/j.crma.2005.02.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.02.013/
[1] M. Ait Ouahra, Weak convergence to fractional Brownian motion in some anisotropic Besov space, Ann. Blaise Pascal (2003), in press
[2] Théorèmes limites pour certaines fonctionnelles associées aux processus stables sur l'espace de Hölder, Publ. Math., Volume 45 (2001), pp. 371-386
[3] Un résultat d'approximation d'une EDPS hyperbolique en norme de Besov anisotropic, C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000), pp. 883-888
[4] Local times for a class of Markov Processes, Illinois J. Math., Volume 8 (1964), pp. 19-39
[5] Convergence of Probability Measures, Wiley, New York, 1968
[6] Fractional Brownian motion as “higher-order” fractional derivatives of Brownian local times, Limit Theorems in Probability and Statistics, vol. I (Balatonlelle, 1999), Jânos Bolyai Math. Soc., Budapest, 2002, pp. 365-387
[7] Théorèmes limites pour les temps locaux d'un processus stable symetrique, Séminaire de Probab., XXXI, Lecture Notes in Math., vol. 1655, 1997, pp. 216-224
[8] Isomorphism of some anisotropic Besov and sequence spaces, Studia Math., Volume 110 (1994) no. 2, pp. 169-189
[9] On the fractional anisotropic Wiener field, Probab. Math. Statist., Volume 16 (1996) no. 1, pp. 85-98
[10] On convergence of stochastic processes, Trans. Amer. Math. Soc., Volume 104 (1962), pp. 430-435
[11] p-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments, Ann. Probab., Volume 20 (1992) no. 4, pp. 1685-1713
[12] Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science, 1993
[13] Le drap Brownien comme limite en loi de temps locaux linéaires (J. Azéma; P.A. Meyer; M. Yor, eds.), Séminaire Probab. XVII, Lect. Notes in Math., vol. 986, Springer, Berlin, 1983, pp. 89-105
Cité par Sources :
Commentaires - Politique