[Propriétés dispersives d'un schéma numérique visqueux pour l'équation de Schrödinger]
Dans cette Note on étudié les propriétés dispersives des schémas d'approximation numérique de l'équation de Schrödinger. On considère des approximations semi-discretes en différences finies. Nous démontrons d'abord que le schéma conservatif habituel ne reproduit pas les propriétés dispersives, uniformement par rapport au pas du maillage. Ceci est du aux hautes fréquences numériques artificielles. On introduit donc un schéma d'approximation visqueux dissipant ces hautes fréquences et l'on montre qu'il possède des propriétés de dispersivité uniformes par rapport au pas du maillage. Nous appliquons ce schéma à l'approximation numérique des équations de Schrödinger non-linéaires. On démontre la convergence dans la classe de non-linéarités dont l'analyse, au niveau de l'équation de Schrödinger continue, a besoin des inegalités de Strichartz.
In this Note we study the dispersive properties of the numerical approximation schemes for the free Schrödinger equation. We consider finite-difference space semi-discretizations. We first show that the standard conservative scheme does not reproduce at the discrete level the properties of the continuous Schrödinger equation. This is due to spurious high frequency numerical solutions. In order to damp out these high-frequencies and to reflect the properties of the continuous problem we add a suitable extra numerical viscosity term at a convenient scale. We prove that the dispersive properties of this viscous scheme are uniform when the mesh-size tends to zero. Finally we prove the convergence of this viscous numerical scheme for a class of nonlinear Schrödinger equations with nonlinearities that may not be handeled by standard energy methods and that require the so-called Strichartz inequalities.
Accepté le :
Publié le :
Liviu I. Ignat 1 ; Enrique Zuazua 1
@article{CRMATH_2005__340_7_529_0, author = {Liviu I. Ignat and Enrique Zuazua}, title = {Dispersive properties of a viscous numerical scheme for the {Schr\"odinger} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {529--534}, publisher = {Elsevier}, volume = {340}, number = {7}, year = {2005}, doi = {10.1016/j.crma.2005.02.024}, language = {en}, }
TY - JOUR AU - Liviu I. Ignat AU - Enrique Zuazua TI - Dispersive properties of a viscous numerical scheme for the Schrödinger equation JO - Comptes Rendus. Mathématique PY - 2005 SP - 529 EP - 534 VL - 340 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2005.02.024 LA - en ID - CRMATH_2005__340_7_529_0 ER -
Liviu I. Ignat; Enrique Zuazua. Dispersive properties of a viscous numerical scheme for the Schrödinger equation. Comptes Rendus. Mathématique, Volume 340 (2005) no. 7, pp. 529-534. doi : 10.1016/j.crma.2005.02.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.02.024/
[1] Interpolation Spaces, An Introduction, Springer-Verlag, 1976
[2] Semilinear Schrödinger Equations, Courant Lecture Notes, vol. 10, 2003
[3] Local smoothing properties of dispersive equations, J. Am. Math. Soc., Volume 1 (1988) no. 2, pp. 413-439
[4] Compact sets in the space
[5] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Monographs in Harmonic Analysis, vol. III, Princeton University Press, 1993
[6] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977), pp. 705-714
[7]
- Continuum limit of 2D fractional nonlinear Schrödinger equation, Journal of Evolution Equations, Volume 23 (2023) no. 2 | DOI:10.1007/s00028-023-00881-3
- On the continuum limit for the discrete nonlinear Schrödinger equation on a large finite cubic lattice, Nonlinear Analysis, Volume 227 (2023), p. 113171 | DOI:10.1016/j.na.2022.113171
- Finite difference scheme for two-dimensional periodic nonlinear Schrödinger equations, Journal of Evolution Equations, Volume 21 (2021) no. 1, p. 391 | DOI:10.1007/s00028-020-00585-y
- Strong Convergence for Discrete Nonlinear Schrödinger equations in the Continuum Limit, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 2, p. 1297 | DOI:10.1137/18m120703x
- Uniform controllability for the beam equation with vanishing structural damping, Czechoslovak Mathematical Journal, Volume 64 (2014) no. 4, p. 869 | DOI:10.1007/s10587-014-0140-7
- Small Time Uniform Controllability of the Linear One-Dimensional Schrödinger Equation with Vanishing Viscosity, Journal of Optimization Theory and Applications, Volume 160 (2014) no. 3, p. 949 | DOI:10.1007/s10957-013-0387-4
- The Wave Equation: Control and Numerics, Control of Partial Differential Equations, Volume 2048 (2012), p. 245 | DOI:10.1007/978-3-642-27893-8_5
- Convergence rates for dispersive approximation schemes to nonlinear Schrödinger equations, Journal de Mathématiques Pures et Appliquées, Volume 98 (2012) no. 5, p. 479 | DOI:10.1016/j.matpur.2012.01.001
- A splitting method for the nonlinear Schrödinger equation, Journal of Differential Equations, Volume 250 (2011) no. 7, p. 3022 | DOI:10.1016/j.jde.2011.01.028
- Dispersive Properties for Discrete Schrödinger Equations, Journal of Fourier Analysis and Applications, Volume 17 (2011) no. 5, p. 1035 | DOI:10.1007/s00041-011-9173-6
- CONVERGENCE OF NUMERICAL SCHEMES FOR SHORT WAVE LONG WAVE INTERACTION EQUATIONS, Journal of Hyperbolic Differential Equations, Volume 08 (2011) no. 04, p. 777 | DOI:10.1142/s0219891611002573
- Resolvent estimates in controllability theory and applications to the discrete wave equation, Journées équations aux dérivées partielles (2011), p. 1 | DOI:10.5802/jedp.55
- Uniform Exponential Decay for Viscous Damped Systems*, Advances in Phase Space Analysis of Partial Differential Equations, Volume 78 (2009), p. 95 | DOI:10.1007/978-0-8176-4861-9_6
- Uniformly exponentially stable approximations for a class of damped systems, Journal de Mathématiques Pures et Appliquées, Volume 91 (2009) no. 1, p. 20 | DOI:10.1016/j.matpur.2008.09.002
- Numerical Dispersive Schemes for the Nonlinear Schrödinger Equation, SIAM Journal on Numerical Analysis, Volume 47 (2009) no. 2, p. 1366 | DOI:10.1137/070683787
- FULLY DISCRETE SCHEMES FOR THE SCHRÖDINGER EQUATION: DISPERSIVE PROPERTIES, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 04, p. 567 | DOI:10.1142/s0218202507002029
- On dispersive stability of Hamiltonian systems on lattices, PAMM, Volume 7 (2007) no. 1, p. 4080033 | DOI:10.1002/pamm.200700847
- Continuum Descriptions for the Dynamics in Discrete Lattices: Derivation and Justification, Analysis, Modeling and Simulation of Multiscale Problems (2006), p. 435 | DOI:10.1007/3-540-35657-6_16
- Macroscopic Behavior of Microscopic Oscillations in Harmonic Lattices via Wigner-Husimi Transforms, Archive for Rational Mechanics and Analysis, Volume 181 (2006) no. 3, p. 401 | DOI:10.1007/s00205-005-0405-2
- Dispersive and long‐time behavior of oscillations in lattices, PAMM, Volume 6 (2006) no. 1, p. 503 | DOI:10.1002/pamm.200610232
Cité par 20 documents. Sources : Crossref
Commentaires - Politique