Comptes Rendus
Numerical Analysis/Partial Differential Equations
Dispersive properties of a viscous numerical scheme for the Schrödinger equation
[Propriétés dispersives d'un schéma numérique visqueux pour l'équation de Schrödinger]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 7, pp. 529-534.

Dans cette Note on étudié les propriétés dispersives des schémas d'approximation numérique de l'équation de Schrödinger. On considère des approximations semi-discretes en différences finies. Nous démontrons d'abord que le schéma conservatif habituel ne reproduit pas les propriétés dispersives, uniformement par rapport au pas du maillage. Ceci est du aux hautes fréquences numériques artificielles. On introduit donc un schéma d'approximation visqueux dissipant ces hautes fréquences et l'on montre qu'il possède des propriétés de dispersivité uniformes par rapport au pas du maillage. Nous appliquons ce schéma à l'approximation numérique des équations de Schrödinger non-linéaires. On démontre la convergence dans la classe de non-linéarités dont l'analyse, au niveau de l'équation de Schrödinger continue, a besoin des inegalités de Strichartz.

In this Note we study the dispersive properties of the numerical approximation schemes for the free Schrödinger equation. We consider finite-difference space semi-discretizations. We first show that the standard conservative scheme does not reproduce at the discrete level the properties of the continuous Schrödinger equation. This is due to spurious high frequency numerical solutions. In order to damp out these high-frequencies and to reflect the properties of the continuous problem we add a suitable extra numerical viscosity term at a convenient scale. We prove that the dispersive properties of this viscous scheme are uniform when the mesh-size tends to zero. Finally we prove the convergence of this viscous numerical scheme for a class of nonlinear Schrödinger equations with nonlinearities that may not be handeled by standard energy methods and that require the so-called Strichartz inequalities.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.02.024

Liviu I. Ignat 1 ; Enrique Zuazua 1

1 Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
@article{CRMATH_2005__340_7_529_0,
     author = {Liviu I. Ignat and Enrique Zuazua},
     title = {Dispersive properties of a viscous numerical scheme for the {Schr\"odinger} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {529--534},
     publisher = {Elsevier},
     volume = {340},
     number = {7},
     year = {2005},
     doi = {10.1016/j.crma.2005.02.024},
     language = {en},
}
TY  - JOUR
AU  - Liviu I. Ignat
AU  - Enrique Zuazua
TI  - Dispersive properties of a viscous numerical scheme for the Schrödinger equation
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 529
EP  - 534
VL  - 340
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2005.02.024
LA  - en
ID  - CRMATH_2005__340_7_529_0
ER  - 
%0 Journal Article
%A Liviu I. Ignat
%A Enrique Zuazua
%T Dispersive properties of a viscous numerical scheme for the Schrödinger equation
%J Comptes Rendus. Mathématique
%D 2005
%P 529-534
%V 340
%N 7
%I Elsevier
%R 10.1016/j.crma.2005.02.024
%G en
%F CRMATH_2005__340_7_529_0
Liviu I. Ignat; Enrique Zuazua. Dispersive properties of a viscous numerical scheme for the Schrödinger equation. Comptes Rendus. Mathématique, Volume 340 (2005) no. 7, pp. 529-534. doi : 10.1016/j.crma.2005.02.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.02.024/

[1] J. Bergh; J. Löfström Interpolation Spaces, An Introduction, Springer-Verlag, 1976

[2] T. Cazenave Semilinear Schrödinger Equations, Courant Lecture Notes, vol. 10, 2003

[3] P. Constantin; J. Saut Local smoothing properties of dispersive equations, J. Am. Math. Soc., Volume 1 (1988) no. 2, pp. 413-439

[4] J. Simon Compact sets in the space Lp(0,T;B), Ann. Mat. Pura Appl., Volume 146 (1987) no. 4, pp. 65-96

[5] E. Stein Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Monographs in Harmonic Analysis, vol. III, Princeton University Press, 1993

[6] R.S. Strichartz Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977), pp. 705-714

[7] Y. Tsutsumi L2-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkc. Ekvacioj, Ser. Int., Volume 30 (1987), pp. 115-125

  • Brian Choi; Alejandro Aceves Continuum limit of 2D fractional nonlinear Schrödinger equation, Journal of Evolution Equations, Volume 23 (2023) no. 2 | DOI:10.1007/s00028-023-00881-3
  • Younghun Hong; Chulkwang Kwak; Changhun Yang On the continuum limit for the discrete nonlinear Schrödinger equation on a large finite cubic lattice, Nonlinear Analysis, Volume 227 (2023), p. 113171 | DOI:10.1016/j.na.2022.113171
  • Younghun Hong; Chulkwang Kwak; Shohei Nakamura; Changhun Yang Finite difference scheme for two-dimensional periodic nonlinear Schrödinger equations, Journal of Evolution Equations, Volume 21 (2021) no. 1, p. 391 | DOI:10.1007/s00028-020-00585-y
  • Younghun Hong; Changhun Yang Strong Convergence for Discrete Nonlinear Schrödinger equations in the Continuum Limit, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 2, p. 1297 | DOI:10.1137/18m120703x
  • Ioan Florin Bugariu Uniform controllability for the beam equation with vanishing structural damping, Czechoslovak Mathematical Journal, Volume 64 (2014) no. 4, p. 869 | DOI:10.1007/s10587-014-0140-7
  • Ioan Florin Bugariu; Ionel Rovenţa Small Time Uniform Controllability of the Linear One-Dimensional Schrödinger Equation with Vanishing Viscosity, Journal of Optimization Theory and Applications, Volume 160 (2014) no. 3, p. 949 | DOI:10.1007/s10957-013-0387-4
  • Sylvain Ervedoza; Enrique Zuazua The Wave Equation: Control and Numerics, Control of Partial Differential Equations, Volume 2048 (2012), p. 245 | DOI:10.1007/978-3-642-27893-8_5
  • Liviu I. Ignat; Enrique Zuazua Convergence rates for dispersive approximation schemes to nonlinear Schrödinger equations, Journal de Mathématiques Pures et Appliquées, Volume 98 (2012) no. 5, p. 479 | DOI:10.1016/j.matpur.2012.01.001
  • Liviu I. Ignat A splitting method for the nonlinear Schrödinger equation, Journal of Differential Equations, Volume 250 (2011) no. 7, p. 3022 | DOI:10.1016/j.jde.2011.01.028
  • Liviu I. Ignat; Diana Stan Dispersive Properties for Discrete Schrödinger Equations, Journal of Fourier Analysis and Applications, Volume 17 (2011) no. 5, p. 1035 | DOI:10.1007/s00041-011-9173-6
  • PAULO AMORIM; MÁRIO FIGUEIRA CONVERGENCE OF NUMERICAL SCHEMES FOR SHORT WAVE LONG WAVE INTERACTION EQUATIONS, Journal of Hyperbolic Differential Equations, Volume 08 (2011) no. 04, p. 777 | DOI:10.1142/s0219891611002573
  • Sylvain Ervedoza Resolvent estimates in controllability theory and applications to the discrete wave equation, Journées équations aux dérivées partielles (2011), p. 1 | DOI:10.5802/jedp.55
  • Sylvain Ervedoza; Enrique Zuazua Uniform Exponential Decay for Viscous Damped Systems*, Advances in Phase Space Analysis of Partial Differential Equations, Volume 78 (2009), p. 95 | DOI:10.1007/978-0-8176-4861-9_6
  • Sylvain Ervedoza; Enrique Zuazua Uniformly exponentially stable approximations for a class of damped systems, Journal de Mathématiques Pures et Appliquées, Volume 91 (2009) no. 1, p. 20 | DOI:10.1016/j.matpur.2008.09.002
  • Liviu I. Ignat; Enrique Zuazua Numerical Dispersive Schemes for the Nonlinear Schrödinger Equation, SIAM Journal on Numerical Analysis, Volume 47 (2009) no. 2, p. 1366 | DOI:10.1137/070683787
  • LIVIU I. IGNAT FULLY DISCRETE SCHEMES FOR THE SCHRÖDINGER EQUATION: DISPERSIVE PROPERTIES, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 04, p. 567 | DOI:10.1142/s0218202507002029
  • Carsten Patz On dispersive stability of Hamiltonian systems on lattices, PAMM, Volume 7 (2007) no. 1, p. 4080033 | DOI:10.1002/pamm.200700847
  • Johannes Giannoulis; Michael Herrmann; Alexander Mielke Continuum Descriptions for the Dynamics in Discrete Lattices: Derivation and Justification, Analysis, Modeling and Simulation of Multiscale Problems (2006), p. 435 | DOI:10.1007/3-540-35657-6_16
  • Alexander Mielke Macroscopic Behavior of Microscopic Oscillations in Harmonic Lattices via Wigner-Husimi Transforms, Archive for Rational Mechanics and Analysis, Volume 181 (2006) no. 3, p. 401 | DOI:10.1007/s00205-005-0405-2
  • Carsten Path; Alexander Mielke Dispersive and long‐time behavior of oscillations in lattices, PAMM, Volume 6 (2006) no. 1, p. 503 | DOI:10.1002/pamm.200610232

Cité par 20 documents. Sources : Crossref

Commentaires - Politique