This Note is devoted to the study of the Fano manifolds X obtained by blow-up along a smooth curve C in a complex projective manifold Y. By the Mori theory, we can ensure the existence of an extremal contraction different from the blow-up . Here we give the complete classification of the corresponding pairs in the case where φ is a fiber type contraction of relative dimension 2, i.e. the general fibers of φ are del Pezzo surfaces. In Tsukioka (Thesis, Nancy University 1, 2005), the relative dimension 1 case is also considered.
Cette Note est consacrée à l'étude des variétés de Fano X obtenues par éclatement d'une courbe lisse C dans une variété projective complexe et lisse Y. D'après la théorie de Mori, on peut assurer l'existence d'une contraction extrémale différente de l'éclatement . Ici, on donne la classification complète des paires correspondantes dans le cas où φ est de type fibrant de dimension relative 2, c'est-à-dire quand les fibres générales de φ sont des surfaces de del Pezzo. Dans Tsukioka (thèse, université Nancy 1, 2005) le cas de dimension relative 1 est aussi étudié.
Accepted:
Published online:
Toru Tsukioka 1
@article{CRMATH_2005__340_8_581_0,
author = {Toru Tsukioka},
title = {Del {Pezzo} surface fibrations obtained by blow-up of a smooth curve in a projective manifold},
journal = {Comptes Rendus. Math\'ematique},
pages = {581--586},
year = {2005},
publisher = {Elsevier},
volume = {340},
number = {8},
doi = {10.1016/j.crma.2005.03.004},
language = {en},
}
Toru Tsukioka. Del Pezzo surface fibrations obtained by blow-up of a smooth curve in a projective manifold. Comptes Rendus. Mathématique, Volume 340 (2005) no. 8, pp. 581-586. doi: 10.1016/j.crma.2005.03.004
[1] A view on contractions of higher-dimensional varieties, Algebraic Geometry, Santa Cruz, 1995, Part 1, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 153-183
[2] Variétés complexes dont l'éclatée en un point est de Fano, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 334 (2002) no. 6, pp. 463-468
[3] Characterizations of projective space and applications to complex symplectic manifolds, Higher Dimensional Birational Geometry (Kyoto, 1997), Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, Tokyo, 2002, pp. 1-88
[4] Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Series, vol. 155, Cambridge University Press, Cambridge, 1990
[5] Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., Volume 13 (1973), pp. 31-47
[6] Some applications of the theory of positive vector bundles, Complete Intersections (Acireale, 1983), Lecture Notes in Math., vol. 1092, Springer, Berlin, 1984, pp. 29-61
[7] Erratum: Classification of Fano 3-folds with , Manuscripta Math., Volume 36 (1981/82) no. 2, pp. 147-162 (MR 83f:14032 Manuscripta Math., 110, 3, 2003, pp. 407)
[8] On Fano 3-folds with , Algebraic Varieties and Analytic Varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 101-129
[9] Toric Fano varieties with divisorial contractions to curves, Math. Nachr., Volume 261/262 (2003), pp. 163-170
Cited by Sources:
Comments - Policy
