Copulas which are invariant under transformations by means of increasing bijections on the unit interval are investigated, and the relationship to maximum attractors and Archimax copulas is discussed.
On étudie les copules qui sont invariantes par rapport aux transformations par les bijections croissantes de l'intervalle unité, et on examine la relation entre les attracteurs des valeurs maximales et les copules Archimax.
Accepted:
Published online:
Erich Peter Klement 1; Radko Mesiar 2, 3; Endre Pap 4
@article{CRMATH_2005__340_10_755_0, author = {Erich Peter Klement and Radko Mesiar and Endre Pap}, title = {Archimax copulas and invariance under transformations}, journal = {Comptes Rendus. Math\'ematique}, pages = {755--758}, publisher = {Elsevier}, volume = {340}, number = {10}, year = {2005}, doi = {10.1016/j.crma.2005.04.012}, language = {en}, }
Erich Peter Klement; Radko Mesiar; Endre Pap. Archimax copulas and invariance under transformations. Comptes Rendus. Mathématique, Volume 340 (2005) no. 10, pp. 755-758. doi : 10.1016/j.crma.2005.04.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.012/
[1] Characterizations of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements, Methods Oper. Res., Volume 48 (1984), pp. 3-22
[2] A class of bivariate distributions including the bivariate logistic, J. Multivariate Anal., Volume 8 (1978), pp. 405-412
[3] C. Alsina, M.J. Frank, B. Schweizer, Associative functions on intervals: a primer on triangular norms, in press
[4] Bivariate distributions with given extreme value attractor, J. Multivariate Anal., Volume 72 (2000), pp. 30-49
[5] Extreme value attractors for star unimodal copulas, C. R. Math. Acad. Sci. Paris, Volume 334 (2002), pp. 689-692
[6] The Asymptotic Theory of Extreme Order Statistics, Krieger, Melbourne, FL, 1987
[7] A characterization of Gumbel's family of extreme value distributions, Statist. Probab. Lett., Volume 8 (1989), pp. 207-211
[8] Triangular Norms, Kluwer Academic, Dordrecht, 2000
[9] A remark on associative copulas. Comment, Math. Univ. Carolin., Volume 40 (1999), pp. 789-793
[10] An Introduction to Copulas, Lecture Notes in Statist., vol. 139, Springer, New York, 1999
[11] Multivariate extreme value distributions, Bull. Inst. Internat. Statist., Volume 49 (1981), pp. 859-878 (with a discussion, 894–902)
[12] Probabilistic Metric Spaces, North-Holland, New York, 1983
[13] Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, Volume 8 (1959), pp. 229-231
[14] Bivariate extreme value theory: models and estimation, Biometrika, Volume 75 (1988), pp. 397-415
Cited by Sources:
⁎ Research supported by two European actions (CEEPUS network SK-42 and COST action 274) and by grants VEGA 1/1145/04, GACR 402/04/1026, and MNTRS-1866 and by the Academy of Sciences and Arts of Vojvodina.
Comments - Policy