Under fairly general hypotheses, we investigate by elementary methods the structure of the p-periodic orbits of a family of transformations near when and has a simple eigenvalue which is a primitive p-th root of unity.
Sous des hypothèses très générales, nous étudions par des méthodes élémentaires la structure de l'ensemble des orbites de période p d'une famille de transformations au voisinage de lorsque et que a une valeur propre simple racine primitive p-ième de l'unité.
Accepted:
Published online:
Marc Chaperon 1; Santiago López de Medrano 2; José Lino Samaniego 3
@article{CRMATH_2005__340_11_827_0,
author = {Marc Chaperon and Santiago L\'opez de Medrano and Jos\'e Lino Samaniego},
title = {On sub-harmonic bifurcations},
journal = {Comptes Rendus. Math\'ematique},
pages = {827--832},
year = {2005},
publisher = {Elsevier},
volume = {340},
number = {11},
doi = {10.1016/j.crma.2005.04.017},
language = {en},
}
Marc Chaperon; Santiago López de Medrano; José Lino Samaniego. On sub-harmonic bifurcations. Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 827-832. doi: 10.1016/j.crma.2005.04.017
[1] M. Chaperon, S. López de Medrano, On the Hopf bifurcation for flows, C. R. Acad. Sci. Paris, Ser. I 340 (2005), in press
[2] J.L. Samaniego, Tesis Doctoral, UNAM, to be defended
Cited by Sources:
Comments - Policy
