[Numerical range, GMRES and Faber polynomials]
We first show that , where A is a linear continuous operator acting in a Hilbert space, and is the Faber polynomial of degree n corresponding to the numerical range of A. Then we deduce several new error bounds based on the numerical range for GMRES, an iterative method for solving non-Hermitian systems of linear equations.
Soit le polynôme de Faber de degré n associé à l'image numérique d'un opérateur linéaire continu A sur un espace de Hilbert. Nous montrons dans un premier temps que . Nous en déduisons ensuite, en terme d'image numérique, de nouvelles estimations d'erreur pour la méthode GMRES, méthode itérative adaptée à la résolution des systèmes linéaires non-hermitiens.
Accepted:
Published online:
Bernhard Beckermann 1
@article{CRMATH_2005__340_11_855_0, author = {Bernhard Beckermann}, title = {Image num\'erique, {GMRES} et polyn\^omes de {Faber}}, journal = {Comptes Rendus. Math\'ematique}, pages = {855--860}, publisher = {Elsevier}, volume = {340}, number = {11}, year = {2005}, doi = {10.1016/j.crma.2005.04.027}, language = {fr}, }
Bernhard Beckermann. Image numérique, GMRES et polynômes de Faber. Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 855-860. doi : 10.1016/j.crma.2005.04.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.027/
[1] Spectral inclusions and analytic continuation, Bull. London Math. Soc., Volume 31 (1999), pp. 722-728
[2] C. Badea, M. Crouzeix, B. Delyon, Convex domains and K-spectral sets, à paraître dans Math. Z. (2005)
[3] B. Beckermann, S.A. Goreinov, E.E. Tyrtyshnikov, Some remarks on the Elman estimate for GMRES, Manuscript, 2004
[4] M. Crouzeix, Numerical range, holomorphic calculus and applications, Manuscript, 2005
[5] Operators with numerical range in a parabola, Arch. Math., Volume 82 (2004), pp. 517-527
[6] Some estimates for analytic functions of strip or sectorial operators, Arch. Math., Volume 81 (2003), pp. 553-566
[7] Generalization of Von Neumann's spectral sets and integral representation of operators, Bull. Soc. Math. France, Volume 1 (1999), pp. 25-42
[8] A MATLAB toolbox for Schwartz–Christoffel mapping, ACM Trans. Math. Software, Volume 8 (1996), pp. 168-186
[9] Fields of values and iterative methods, Linear Algebra Appl., Volume 180 (1993), pp. 167-197
[10] Geometric aspects in the theory of Krylov subspace methods, Acta Numerica, Volume 10 (2001), pp. 251-312
[11] Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., Volume 20 (1983), pp. 345-357
[12] H.C. Elman, Iterative methods for sparse nonsymmetric systems of linear equations, PhD Thesis, Department of Computer Science, Yale University, 1982
[13] Iterative Methods for Solving Linear Systems, Frontiers Appl. Math., vol. 17, SIAM, 1997
[14] On Faber polynomials and Faber expansions, Math. Z., Volume 99 (1967), pp. 193-206
[15] Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, MA, 1996
[16] GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Comput., Volume 7 (1986), pp. 856-869
[17] The Kreiss matrix theorem on a general complex domain, SIAM J. Matrix Anal. Appl., Volume 21 (1999), pp. 145-165
Cited by Sources:
Comments - Policy