[Consistance des facteurs Bayes pour des lois a priori intrinsèques dans des modèles lineaires Gaussiens]
Le paradoxe de Jeffreys–Lindley fait référence au fait bien connu qu'une hypothèse nulle sur la paramètre de moyenne d'une loi Gaussienne, qui est concentrée autour d'une valeur donnée est toujours acceptée, lorsque la variance de la loi à priori conjuguée tend vers l'infini, ce qui implique que la procédure Bayésienne associée n'est pas consistante, et que les lois à priori limites de distributions de probabilités, ne sont pas nécéssairement appropriées pour des problèmes de tests d'hypothèse. Les lois à priori intrinsèques, qui sont elles-même limites de distributions de probabilité, se sont révélées être très utiles pour des problèmes de tests d'hypothèse, et en particulier, pour les tests concernant les coefficients de régression de modèles linéaires Gaussiens. Ce Note prouve la consistance des facteurs Bayes lorsque des lois à priori intrinsèques sont utilisées, dans des modèles linéaires Gaussiens, avec des conditions très faibles sur la matrice d'expérience.
The Jeffreys–Lindley paradox refers to the well-known fact that a sharp null hypothesis on the normal mean parameter is always accepted when the variance of the conjugate prior goes to infinity, thus implying that the resulting Bayesian procedure is not consistent, and that some limiting forms of proper prior distributions are not necessarily suitable for testing problems. Intrinsic priors, which are limits of proper priors, have been proved to be extremely useful for testing problems, and, in particular, for testing hypothesis on the regression coefficients of normal linear models. This Note shows the consistency of the Bayes factors when using intrinsic priors for normal linear models under very mild conditions on the design matrix.
Accepté le :
Publié le :
Elías Moreno 1 ; F. Javier Girón 2
@article{CRMATH_2005__340_12_911_0, author = {El{\'\i}as Moreno and F. Javier Gir\'on}, title = {Consistency of {Bayes} factors for intrinsic priors in normal linear models}, journal = {Comptes Rendus. Math\'ematique}, pages = {911--914}, publisher = {Elsevier}, volume = {340}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.05.001}, language = {en}, }
Elías Moreno; F. Javier Girón. Consistency of Bayes factors for intrinsic priors in normal linear models. Comptes Rendus. Mathématique, Volume 340 (2005) no. 12, pp. 911-914. doi : 10.1016/j.crma.2005.05.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.05.001/
[1] The intrinsic Bayes factor for model selection and prediction, J. Amer. Statist. Assoc., Volume 91 (1996), pp. 109-122
[2] A statistical paradox, Biometrica, Volume 44 (1957), pp. 187-192
[3] An intrinsic limiting procedure for model selection and hypotheses testing, J. Amer. Statist. Assoc., Volume 93 (1998), pp. 1451-1460
[4] Intrinsic priors for hypotheses testing in normal regression models, Rev. Acad. Cienc. Ser. A Mat., Volume 97 (2003), pp. 53-61
[5] Linear Statistical Inference and its Applications, Wiley, New York, 1973
[6] A note on the Jeffreys–Lindley paradox, Statist. Sinica, Volume 3 (1993), pp. 601-608
Cité par Sources :
Commentaires - Politique