We exhibit upper bounds for the probability distribution of the generalized condition number of singular complex matrices. To this end, we develop a new technique to study volumes of tubes about projective varieties in the complex projective space. As a main outcome, we show an upper bound estimate for the volume of the intersection of a tube with an equi-dimensional projective algebraic variety.
Nous exhibons des bornes de la fonction de distribution du conditionnement des matrices singulières. Pour ce but nous developpons une technique nouvelle pour analyser les volumes des tubes (par rapport a la distance de Fubini–Study) autour des sous-variétés algèbriques d'un espace projectif complex. Plus spécifiquement, nous demontrons des bornes supérieueres de volumes des intersections des tubes extrinsèques (autour des sous-variétés algébriques avec une autre variété algèbrique donnée).
Accepted:
Published online:
Carlos Beltrán 1; Luis Miguel Pardo 1
@article{CRMATH_2005__340_12_915_0, author = {Carlos Beltr\'an and Luis Miguel Pardo}, title = {Upper bounds on the distribution of the condition number of singular matrices}, journal = {Comptes Rendus. Math\'ematique}, pages = {915--919}, publisher = {Elsevier}, volume = {340}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.05.012}, language = {en}, }
TY - JOUR AU - Carlos Beltrán AU - Luis Miguel Pardo TI - Upper bounds on the distribution of the condition number of singular matrices JO - Comptes Rendus. Mathématique PY - 2005 SP - 915 EP - 919 VL - 340 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2005.05.012 LA - en ID - CRMATH_2005__340_12_915_0 ER -
Carlos Beltrán; Luis Miguel Pardo. Upper bounds on the distribution of the condition number of singular matrices. Comptes Rendus. Mathématique, Volume 340 (2005) no. 12, pp. 915-919. doi : 10.1016/j.crma.2005.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.05.012/
[1] The distribution of condition numbers of rational data of bounded bit length, Found. Comput. Math., Volume 2 (2002), pp. 1-52
[2] The probability that a numerical analysis problem is difficult, Math. Comp., Volume 50 (1988), pp. 449-480
[3] The approximation of one matrix by another of lower rank, Psychometrika, Volume 1 (1936), pp. 211-218
[4] Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl., Volume 9 (1988), pp. 543-560
[5] On the distribution of a scaled condition number, Math. Comp., Volume 58 (1992), pp. 185-190
[6] Intersection Theory, Ergeb. Math. Grenzgeb. (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984
[7] Matrix Computations, Johns Hopkins Stud. Math. Sci., Johns Hopkins University Press, Baltimore, MD, 1996
[8] Volumes of tubes about complex submanifolds of complex projective space, Trans. Amer. Math. Soc., Volume 291 (1985), pp. 437-449
[9] Tubes, Progr. Math., vol. 221, Birkhäuser, Basel, 2004
[10] Definability and fast quantifier elimination in algebraically closed fields, Theoret. Comput. Sci., Volume 24 (1983), pp. 239-277
[11] Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002
[12] W. Kahan, Huge generalized inverses of rank-deficient matrices, Unpublished manuscript
[13] Results and problems in the theory of doubly-stochastic matrices, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, Volume 1 (1962/1963), pp. 319-334
[14] Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Tiel. Entwicklung willkurlichen Funktionen nach System vorgeschriebener, Maht. Ann., Volume 63 (1907), pp. 433-476
[15] On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc. (N.S.), Volume 13 (1985), pp. 87-121
[16] Matrix Perturbation Theory, Computer Sci. Sci. Comput., Academic Press, Boston, MA, 1990
[17] Numerical Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997
[18] Rounding-off errors in matrix processes, Quart. J. Mech. Appl. Math., Volume 1 (1948), pp. 287-308
[19] Numerical inverting of matrices of high order, Bull. Amer. Math. Soc., Volume 53 (1947), pp. 1021-1099
[20] On the volume of tubes, Amer. J. Math., Volume 61 (1939), pp. 461-472
[21] The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965
Cited by Sources:
⁎ Research was partially supported by MTM2004-01167.
Comments - Policy