Nous décrivons une méthode de volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages déformés. L'idée principale est de calculer le gradient sur chaque noeud de chaque maille à l'aide de l'inconnue principale au centre des mailles et d'inconnues auxiliaires définies sur les arêtes du maillage. Ces dernières sont éliminées en imposant des relations de continuité des flux. La matrice globale associée à ce schéma est symétrique définie positive. Nous montrons la robustesse et la précision de la méthode par comparaison à des solutions analytiques et aux résultats obtenus par d'autres schémas numériques.
We introduce a finite volume method for highly anisotropic diffusion operators on unstructured meshes. The main idea is to calculate the gradient on each cell vertex using the cell-centered unknown and other unknowns calculated on the cell edges. These degrees of freedom are eliminated imposing flux continuity conditions. The resulting global matrix is symmetric and positive definite. We show the robustness and the precision of the method in comparison with analytical solutions and results obtained by other numerical schemes.
Accepté le :
Publié le :
Christophe Le Potier 1
@article{CRMATH_2005__340_12_921_0, author = {Christophe Le Potier}, title = {Sch\'ema volumes finis pour des op\'erateurs de diffusion fortement anisotropes sur des maillages non structur\'es}, journal = {Comptes Rendus. Math\'ematique}, pages = {921--926}, publisher = {Elsevier}, volume = {340}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.05.011}, language = {fr}, }
TY - JOUR AU - Christophe Le Potier TI - Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés JO - Comptes Rendus. Mathématique PY - 2005 SP - 921 EP - 926 VL - 340 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2005.05.011 LA - fr ID - CRMATH_2005__340_12_921_0 ER -
Christophe Le Potier. Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés. Comptes Rendus. Mathématique, Volume 340 (2005) no. 12, pp. 921-926. doi : 10.1016/j.crma.2005.05.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.05.011/
[1] Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods, SIAM J. Sci. Comput., Volume 19 (1998) no. 5, pp. 1700-1716
[2] Mixed and Hybrid Finite Methods, Springer-Verlag, New York, 1991
[3] F. Dabbène, Mixed hybrid finite elements for transport of pollutants by undergrounds water, in: Proceeding of the 10th International Conference on Finite Elements in Fluids, Tucson, AZ, USA, 1998
[4] C. Le Potier, Finite volume in 2 or 3 dimensions for a diffusion convection equation applied to porous media with Cast3m, in: Proceedings of the XVth International Conference on Computational methods in Water Resources 2004, vol. 2, Elsevier, pp. 1015–1026
[5] C. Le Potier, A finite volume method for the approximation of highly anisotropic diffusion operators on unstructured meshes, accepté dans “Finite Volumes for Complex Application IV, 2005”
- Error estimate of the cell-centered nonlinear positivity-preserving two-point flux approximation schemes, Computers Mathematics with Applications, Volume 137 (2023), pp. 1-13 | DOI:10.1016/j.camwa.2023.02.015 | Zbl:1538.65460
- The mixed virtual element discretization for highly-anisotropic problems: the role of the boundary degrees of freedom, Mathematics in Engineering, Volume 5 (2023) no. 6, p. 32 (Id/No 99) | DOI:10.3934/mine.2023099 | Zbl:1545.65422
- A non-linear finite volume method coupled with a modified higher order MUSCL-type method for the numerical simulation of two-phase flows in non-homogeneous and non-isotropic oil reservoirs, Computers Mathematics with Applications, Volume 92 (2021), pp. 120-133 | DOI:10.1016/j.camwa.2021.03.023 | Zbl:1524.76447
- Positivity-preserving finite volume scheme for compressible two-phase flows in anisotropic porous media: the densities are depending on the physical pressures, Journal of Computational Physics, Volume 407 (2020), p. 29 (Id/No 109233) | DOI:10.1016/j.jcp.2020.109233 | Zbl:7504706
- A new multipoint flux approximation method with a quasi-local stencil (MPFA-QL) for the simulation of diffusion problems in anisotropic and heterogeneous media, Applied Mathematical Modelling, Volume 70 (2019), pp. 659-676 | DOI:10.1016/j.apm.2019.01.033 | Zbl:1465.76061
- Convergence of a positive nonlinear control volume finite element scheme for solving an anisotropic degenerate breast cancer development model, Computers Mathematics with Applications, Volume 76 (2018) no. 3, pp. 551-578 | DOI:10.1016/j.camwa.2018.04.037 | Zbl:1419.65059
- Multiscale finite-volume CVD-MPFA formulations on structured and unstructured grids, Multiscale Modeling Simulation, Volume 14 (2016) no. 2, pp. 559-594 | DOI:10.1137/140953691 | Zbl:1381.76224
- A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes, SIAM Journal on Scientific Computing, Volume 37 (2015) no. 1, p. a420-a438 | DOI:10.1137/140972470 | Zbl:1315.65077
- A Nominally Second-Order Cell-Centered Finite Volume Scheme for Simulating Three-Dimensional Anisotropic Diffusion Equations on Unstructured Grids, Communications in Computational Physics, Volume 16 (2014) no. 4, p. 841 | DOI:10.4208/cicp.310513.170314a
- A nonlinear second order in space correction and maximum principle for diffusion operators, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 352 (2014) no. 11, pp. 947-952 | DOI:10.1016/j.crma.2014.08.010 | Zbl:1303.65090
- Convergence of a Nonlinear Scheme for Anisotropic Diffusion Equations, Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, Volume 77 (2014), p. 439 | DOI:10.1007/978-3-319-05684-5_43
- A reconstruction algorithm with flexible stencils for anisotropic diffusion equations on 2D skewed meshes, Journal of Computational Physics, Volume 256 (2014), pp. 484-500 | DOI:10.1016/j.jcp.2013.09.012 | Zbl:1349.65575
- Interpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general grids, Journal of Computational Physics, Volume 275 (2014), pp. 569-588 | DOI:10.1016/j.jcp.2014.07.011 | Zbl:1349.65586
- M-adaptation in the mimetic finite difference method, M
AS. Mathematical Models Methods in Applied Sciences, Volume 24 (2014) no. 8, pp. 1621-1663 | DOI:10.1142/s0218202514400053 | Zbl:1291.65320 - Monotonicity of the cell-centred triangular MPFA method for saturated and unsaturated flow in heterogeneous porous media, Journal of Hydrology, Volume 504 (2013), p. 132 | DOI:10.1016/j.jhydrol.2013.09.041
- MIXED FINITE ELEMENT METHODS: IMPLEMENTATION WITH ONE UNKNOWN PER ELEMENT, LOCAL FLUX EXPRESSIONS, POSITIVITY, POLYGONAL MESHES, AND RELATIONS TO OTHER METHODS, Mathematical Models and Methods in Applied Sciences, Volume 23 (2013) no. 05, p. 803 | DOI:10.1142/s0218202512500613
- Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations, Numerische Mathematik, Volume 125 (2013) no. 3, pp. 387-417 | DOI:10.1007/s00211-013-0545-5 | Zbl:1281.65139
- , SPE Reservoir Simulation Symposium (2013) | DOI:10.2118/163626-ms
- A family of multi-point flux approximation schemes for general element types in two and three dimensions with convergence performance, International Journal for Numerical Methods in Fluids, Volume 69 (2012) no. 11, pp. 1797-1817 | DOI:10.1002/fld.2665 | Zbl:1253.76125
- A cell-centered scheme for heterogeneous anisotropic diffusion problems on general meshes, International Journal on Finite Volumes, Volume 8 (2012), p. 40 (Id/No hal-01116990) | Zbl:1490.65243
- A nominally second-order accurate finite volume cell-centered scheme for anisotropic diffusion on two-dimensional unstructured grids, Journal of Computational Physics, Volume 231 (2012) no. 5, pp. 2259-2299 | DOI:10.1016/j.jcp.2011.11.029 | Zbl:1242.65178
- On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 45 (2011) no. 4, p. 627 | DOI:10.1051/m2an/2010068
- Non-linear flux-splitting schemes with imposed discrete maximum principle for elliptic equations with highly anisotropic coefficients, International Journal for Numerical Methods in Fluids, Volume 66 (2011) no. 3, pp. 299-323 | DOI:10.1002/fld.2258 | Zbl:1301.86002
- A family of MPFA finite-volume schemes with full pressure support for the general tensor pressure equation on cell-centered triangular grids, Journal of Computational Physics, Volume 230 (2011) no. 1, pp. 205-231 | DOI:10.1016/j.jcp.2010.09.012 | Zbl:1427.76161
- Bad behavior of Godunov mixed methods for strongly anisotropic advection-dispersion equations, Journal of Computational Physics, Volume 230 (2011) no. 23, pp. 8410-8426 | DOI:10.1016/j.jcp.2011.07.021 | Zbl:1241.65084
- Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle, SIAM Journal on Numerical Analysis, Volume 49 (2011) no. 2, p. 459 | DOI:10.1137/090770849
- Quasi M-Matrix Multifamily Continuous Darcy-Flux Approximations with Full Pressure Support on Structured and Unstructured Grids in Three Dimensions, SIAM Journal on Scientific Computing, Volume 33 (2011) no. 2, p. 455 | DOI:10.1137/080745390
- A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations, SIAM Journal on Scientific Computing, Volume 33 (2011) no. 4, p. 1739 | DOI:10.1137/100786046
- , SPE Reservoir Simulation Symposium (2011) | DOI:10.2118/142206-ms
- Maximum and Minimum Principles for Radionuclide Transport Calculations in Geological Radioactive Waste Repository: Comparison Between a Mixed Hybrid Finite Element Method and Finite Volume Element discretizations, Transport in Porous Media, Volume 88 (2011) no. 1, p. 65 | DOI:10.1007/s11242-011-9724-y
- q-families of CVD(MPFA) schemes on general elements: numerical convergence and the maximum principle, Archives of Computational Methods in Engineering, Volume 17 (2010) no. 2, pp. 137-189 | DOI:10.1007/s11831-010-9043-4 | Zbl:1269.76075
- A nonlinear correction and maximum principle for diffusion operators discretized using cell-centered finite volume schemes, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 11-12, pp. 691-695 | DOI:10.1016/j.crma.2010.04.017 | Zbl:1193.65188
- Convergence of finite volume MPFA O type schemes for heterogeneous anisotropic diffusion problems on general meshes, International Journal on Finite Volumes, Volume 7 (2010) no. 2, p. 34 (Id/No hal-00340159) | Zbl:1490.65235
- Double-families of quasi-positive Darcy-flux approximations with highly anisotropic tensors on structured and unstructured grids, Journal of Computational Physics, Volume 229 (2010) no. 3, pp. 594-625 | DOI:10.1016/j.jcp.2009.09.037 | Zbl:1253.76091
- Quasi-positive families of continuous Darcy-flux finite volume schemes on structured and unstructured grids, Journal of Computational and Applied Mathematics, Volume 234 (2010) no. 7, pp. 2152-2161 | DOI:10.1016/j.cam.2009.08.078 | Zbl:1402.76078
- The Discrete Duality Finite Volume Method for Convection-diffusion Problems, SIAM Journal on Numerical Analysis, Volume 47 (2010) no. 6, p. 4163 | DOI:10.1137/080731219
- A Finite Volume Scheme for Diffusion Problems on General Meshes Applying Monotony Constraints, SIAM Journal on Numerical Analysis, Volume 47 (2010) no. 6, p. 4193 | DOI:10.1137/080732183
- A linear scheme satisfying a maximum principle for anisotropic diffusion operators on distorted grids, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 347 (2009) no. 1-2, pp. 105-110 | DOI:10.1016/j.crma.2008.11.006 | Zbl:1158.65079
- Analysis and construction of cell-centered finite volume scheme for diffusion equations on distorted meshes, Computer Methods in Applied Mechanics and Engineering, Volume 198 (2009) no. 37-40, pp. 3039-3050 | DOI:10.1016/j.cma.2009.05.006 | Zbl:1229.76065
- A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators, International Journal on Finite Volumes, Volume 6 (2009) no. 2, p. 20 (Id/No hal-01116968) | Zbl:1490.65242
- A generalized Richards equation for surface/subsurface flow modelling, Journal of Hydrology, Volume 366 (2009) no. 1-4, p. 9 | DOI:10.1016/j.jhydrol.2008.12.007
- A Compact Procedure for Discretization of the Anisotropic Diffusion Operator, Numerical Heat Transfer, Part B: Fundamentals, Volume 55 (2009) no. 5, p. 339 | DOI:10.1080/10407790902816747
- Local flux mimetic finite difference methods, Numerische Mathematik, Volume 112 (2009) no. 1, pp. 115-152 | DOI:10.1007/s00211-008-0203-5 | Zbl:1165.65063
- Symmetric Positive Definite Flux-Continuous Full-Tensor Finite-Volume Schemes on Unstructured Cell-Centered Triangular Grids, SIAM Journal on Scientific Computing, Volume 31 (2009) no. 2, p. 1192 | DOI:10.1137/070692182
- , SPE Reservoir Simulation Symposium (2009) | DOI:10.2118/119186-ms
- Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 346 (2008) no. 17-18, pp. 1007-1012 | DOI:10.1016/j.crma.2008.07.015 | Zbl:1152.65107
- A finite volume method for advection-diffusion problems in convection-dominated regimes, Computer Methods in Applied Mechanics and Engineering, Volume 197 (2008) no. 13-16, pp. 1242-1261 | DOI:10.1016/j.cma.2007.11.014 | Zbl:1159.76356
- Hybrid and multi‐point formulations of the lowest‐order mixed methods for Darcy's flow on triangles, International Journal for Numerical Methods in Fluids, Volume 58 (2008) no. 9, p. 1041 | DOI:10.1002/fld.1785
- A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 344 (2007) no. 6, pp. 403-406 | DOI:10.1016/j.crma.2007.01.024 | Zbl:1112.65120
- Approximation of 2D and 3D diffusion operators with variable full tensor coefficients on arbitrary meshes, Computer Methods in Applied Mechanics and Engineering, Volume 196 (2007) no. 21-24, pp. 2497-2526 | DOI:10.1016/j.cma.2007.01.005 | Zbl:1173.76362
- A cell-centered diffusion scheme on two-dimensional unstructured meshes, Journal of Computational Physics, Volume 224 (2007) no. 2, pp. 785-823 | DOI:10.1016/j.jcp.2006.10.025 | Zbl:1120.65327
- Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes. (Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés)., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 341 (2005) no. 12, pp. 787-792 | DOI:10.1016/j.crma.2005.10.010 | Zbl:1081.65086
Cité par 52 documents. Sources : Crossref, zbMATH
Commentaires - Politique