Comptes Rendus
Partial Differential Equations
Convergence to the equilibrium for the Pauli equation without detailed balance condition
Comptes Rendus. Mathématique, Volume 341 (2005) no. 1, pp. 5-10.

We prove that for ρ(0,1), the homogeneous Boltzmann–Pauli equation, without detailed balance condition on the cross-section, has a unique steady state of total charge ρ. Moreover, we show that the solutions to the Cauchy problem converge to this steady state, as t tends to infinity.

Nous montrons que pour tout ρ(0,1), il existe un unique état stationaire de charge totale ρ pour l'équation de Boltzmann–Pauli homogène, sans hypothèse d'équilibre en détail sur la section efficace. Nous montrons ensuite la convergence en temps grand vers cet équilibre des solutions du problème de Cauchy.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.05.020

Naoufel Ben Abdallah 1; Miguel Escobedo 2; Stéphane Mischler 3

1 Laboratoire de mathématique pour l'industrie et la physique (MIP), université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 04, France
2 Departamento de Matemáticas, Universidad del País Vasco, Apartado 644, E48080 Bilbao, Spain
3 Ceremade – UMR 7534, université de Paris IX–Dauphine, place de Lattre de Tassigny, 75775 Paris cedex 16, France
@article{CRMATH_2005__341_1_5_0,
     author = {Naoufel Ben Abdallah and Miguel Escobedo and St\'ephane Mischler},
     title = {Convergence to the equilibrium for the {Pauli} equation without detailed balance condition},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {5--10},
     publisher = {Elsevier},
     volume = {341},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crma.2005.05.020},
     language = {en},
}
TY  - JOUR
AU  - Naoufel Ben Abdallah
AU  - Miguel Escobedo
AU  - Stéphane Mischler
TI  - Convergence to the equilibrium for the Pauli equation without detailed balance condition
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 5
EP  - 10
VL  - 341
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2005.05.020
LA  - en
ID  - CRMATH_2005__341_1_5_0
ER  - 
%0 Journal Article
%A Naoufel Ben Abdallah
%A Miguel Escobedo
%A Stéphane Mischler
%T Convergence to the equilibrium for the Pauli equation without detailed balance condition
%J Comptes Rendus. Mathématique
%D 2005
%P 5-10
%V 341
%N 1
%I Elsevier
%R 10.1016/j.crma.2005.05.020
%G en
%F CRMATH_2005__341_1_5_0
Naoufel Ben Abdallah; Miguel Escobedo; Stéphane Mischler. Convergence to the equilibrium for the Pauli equation without detailed balance condition. Comptes Rendus. Mathématique, Volume 341 (2005) no. 1, pp. 5-10. doi : 10.1016/j.crma.2005.05.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.05.020/

[1] N. Ben Abdallah; H. Chaker The high field asymptotics for degenerate semiconductors, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 7, pp. 1253-1272

[2] N. Ben Abdallah; H. Chaker The high field asymptotics for degenerate semiconductors: Initial and boundary layer analysis, Asymptotic Anal., Volume 37 (2004) no. 2, pp. 143-174

[3] T. Cazenave; A. Haraux An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Math. Appl., vol. 13, Clarendon Press, Oxford University Press, New York, 1998

[4] P. Degond; T. Goudon; F. Poupaud Diffusion approximation for nonhomogeneous and nonmicroreversible processes, Indiana Univ. Math. J., Volume 49 (2000), pp. 1175-1198

[5] R.E. Edwards Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, 1965

[6] M. Escobedo; S. Mischler; M. Rodriguez Ricard On self-similarity and stationary problem for coagulation and fragmentation models, Ann. Institut H. Poincaré Anal. Non Lineaire, Volume 22 (2005), pp. 99-125

[7] I.M. Gamba; V. Panferov; C. Villani On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys., Volume 246 (2004), pp. 503-541

[8] T. Goudon Equilibrium solutions for the Pauli operator, C. R. Acad Sci. Paris, Volume 330 (2000), pp. 1035-1038

[9] T. Goudon; A. Mellet On fluid limit for the semiconductors Boltzmann equation, J. Differential Equations, Volume 189 (2003) no. 1, pp. 17-45

[10] A. Mellet; B. Perthame L1 contraction property for a Boltzmann equation with Pauli statistics, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 4, pp. 337-340

[11] S. Mischler, C. Mouhot, M. Rodriguez Ricard, Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem, J. Statist. Phys., submitted for publication

[12] F.J. Mustieles Global existence of solutions for the nonlinear Boltzmann equation of semiconductor physics, Rev. Mat. Iberoamericana, Volume 6 (1990) no. 1–2, pp. 43-59

[13] F. Poupaud On a system of nonlinear Boltzmann equations of semiconductors physics, SIAM J. Appl. Math., Volume 50 (1990), pp. 1593-1606

Cited by Sources:

Comments - Policy