[Convergence vers l'equilibre des solutions de l'équation de Pauli sans hypothèse d'équilibre en détail]
Nous montrons que pour tout
We prove that for
Accepté le :
Publié le :
Naoufel Ben Abdallah 1 ; Miguel Escobedo 2 ; Stéphane Mischler 3
@article{CRMATH_2005__341_1_5_0, author = {Naoufel Ben Abdallah and Miguel Escobedo and St\'ephane Mischler}, title = {Convergence to the equilibrium for the {Pauli} equation without detailed balance condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {5--10}, publisher = {Elsevier}, volume = {341}, number = {1}, year = {2005}, doi = {10.1016/j.crma.2005.05.020}, language = {en}, }
TY - JOUR AU - Naoufel Ben Abdallah AU - Miguel Escobedo AU - Stéphane Mischler TI - Convergence to the equilibrium for the Pauli equation without detailed balance condition JO - Comptes Rendus. Mathématique PY - 2005 SP - 5 EP - 10 VL - 341 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2005.05.020 LA - en ID - CRMATH_2005__341_1_5_0 ER -
%0 Journal Article %A Naoufel Ben Abdallah %A Miguel Escobedo %A Stéphane Mischler %T Convergence to the equilibrium for the Pauli equation without detailed balance condition %J Comptes Rendus. Mathématique %D 2005 %P 5-10 %V 341 %N 1 %I Elsevier %R 10.1016/j.crma.2005.05.020 %G en %F CRMATH_2005__341_1_5_0
Naoufel Ben Abdallah; Miguel Escobedo; Stéphane Mischler. Convergence to the equilibrium for the Pauli equation without detailed balance condition. Comptes Rendus. Mathématique, Volume 341 (2005) no. 1, pp. 5-10. doi : 10.1016/j.crma.2005.05.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.05.020/
[1] The high field asymptotics for degenerate semiconductors, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 7, pp. 1253-1272
[2] The high field asymptotics for degenerate semiconductors: Initial and boundary layer analysis, Asymptotic Anal., Volume 37 (2004) no. 2, pp. 143-174
[3] An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Math. Appl., vol. 13, Clarendon Press, Oxford University Press, New York, 1998
[4] Diffusion approximation for nonhomogeneous and nonmicroreversible processes, Indiana Univ. Math. J., Volume 49 (2000), pp. 1175-1198
[5] Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, 1965
[6] On self-similarity and stationary problem for coagulation and fragmentation models, Ann. Institut H. Poincaré Anal. Non Lineaire, Volume 22 (2005), pp. 99-125
[7] On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys., Volume 246 (2004), pp. 503-541
[8] Equilibrium solutions for the Pauli operator, C. R. Acad Sci. Paris, Volume 330 (2000), pp. 1035-1038
[9] On fluid limit for the semiconductors Boltzmann equation, J. Differential Equations, Volume 189 (2003) no. 1, pp. 17-45
[10]
[11] S. Mischler, C. Mouhot, M. Rodriguez Ricard, Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem, J. Statist. Phys., submitted for publication
[12] Global existence of solutions for the nonlinear Boltzmann equation of semiconductor physics, Rev. Mat. Iberoamericana, Volume 6 (1990) no. 1–2, pp. 43-59
[13] On a system of nonlinear Boltzmann equations of semiconductors physics, SIAM J. Appl. Math., Volume 50 (1990), pp. 1593-1606
- Macroscopic approximation of a Fermi-Dirac statistics: Unbounded velocity space setting, Journal de Mathématiques Pures et Appliquées, Volume 158 (2022), p. 42 | DOI:10.1016/j.matpur.2021.08.005
- Homogenized Diffusion Limit of a Vlasov–Poisson–Fokker–Planck Model, Annales Henri Poincaré, Volume 17 (2016) no. 9, p. 2529 | DOI:10.1007/s00023-016-0484-7
- On the Diffusion Limit of a Semiconductor Boltzmann–Poisson System Without Micro-Reversible Process, Communications in Partial Differential Equations, Volume 35 (2010) no. 7, p. 1163 | DOI:10.1080/03605302.2010.483659
Cité par 3 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier