We prove that for , the homogeneous Boltzmann–Pauli equation, without detailed balance condition on the cross-section, has a unique steady state of total charge ρ. Moreover, we show that the solutions to the Cauchy problem converge to this steady state, as t tends to infinity.
Nous montrons que pour tout , il existe un unique état stationaire de charge totale ρ pour l'équation de Boltzmann–Pauli homogène, sans hypothèse d'équilibre en détail sur la section efficace. Nous montrons ensuite la convergence en temps grand vers cet équilibre des solutions du problème de Cauchy.
Accepted:
Published online:
Naoufel Ben Abdallah 1; Miguel Escobedo 2; Stéphane Mischler 3
@article{CRMATH_2005__341_1_5_0, author = {Naoufel Ben Abdallah and Miguel Escobedo and St\'ephane Mischler}, title = {Convergence to the equilibrium for the {Pauli} equation without detailed balance condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {5--10}, publisher = {Elsevier}, volume = {341}, number = {1}, year = {2005}, doi = {10.1016/j.crma.2005.05.020}, language = {en}, }
TY - JOUR AU - Naoufel Ben Abdallah AU - Miguel Escobedo AU - Stéphane Mischler TI - Convergence to the equilibrium for the Pauli equation without detailed balance condition JO - Comptes Rendus. Mathématique PY - 2005 SP - 5 EP - 10 VL - 341 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2005.05.020 LA - en ID - CRMATH_2005__341_1_5_0 ER -
%0 Journal Article %A Naoufel Ben Abdallah %A Miguel Escobedo %A Stéphane Mischler %T Convergence to the equilibrium for the Pauli equation without detailed balance condition %J Comptes Rendus. Mathématique %D 2005 %P 5-10 %V 341 %N 1 %I Elsevier %R 10.1016/j.crma.2005.05.020 %G en %F CRMATH_2005__341_1_5_0
Naoufel Ben Abdallah; Miguel Escobedo; Stéphane Mischler. Convergence to the equilibrium for the Pauli equation without detailed balance condition. Comptes Rendus. Mathématique, Volume 341 (2005) no. 1, pp. 5-10. doi : 10.1016/j.crma.2005.05.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.05.020/
[1] The high field asymptotics for degenerate semiconductors, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 7, pp. 1253-1272
[2] The high field asymptotics for degenerate semiconductors: Initial and boundary layer analysis, Asymptotic Anal., Volume 37 (2004) no. 2, pp. 143-174
[3] An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Math. Appl., vol. 13, Clarendon Press, Oxford University Press, New York, 1998
[4] Diffusion approximation for nonhomogeneous and nonmicroreversible processes, Indiana Univ. Math. J., Volume 49 (2000), pp. 1175-1198
[5] Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, 1965
[6] On self-similarity and stationary problem for coagulation and fragmentation models, Ann. Institut H. Poincaré Anal. Non Lineaire, Volume 22 (2005), pp. 99-125
[7] On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys., Volume 246 (2004), pp. 503-541
[8] Equilibrium solutions for the Pauli operator, C. R. Acad Sci. Paris, Volume 330 (2000), pp. 1035-1038
[9] On fluid limit for the semiconductors Boltzmann equation, J. Differential Equations, Volume 189 (2003) no. 1, pp. 17-45
[10] contraction property for a Boltzmann equation with Pauli statistics, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 4, pp. 337-340
[11] S. Mischler, C. Mouhot, M. Rodriguez Ricard, Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem, J. Statist. Phys., submitted for publication
[12] Global existence of solutions for the nonlinear Boltzmann equation of semiconductor physics, Rev. Mat. Iberoamericana, Volume 6 (1990) no. 1–2, pp. 43-59
[13] On a system of nonlinear Boltzmann equations of semiconductors physics, SIAM J. Appl. Math., Volume 50 (1990), pp. 1593-1606
Cited by Sources:
Comments - Policy