[Sur l'équation de Brezis–Nirenberg sur
We consider the following Brezis–Nirenberg problem on
Nous considérons le problème de Brezis–Nirenberg suivant sur
Publié le :
Wenyi Chen 1 ; Juncheng Wei 2
@article{CRMATH_2005__341_3_153_0, author = {Wenyi Chen and Juncheng Wei}, title = {On the {Brezis{\textendash}Nirenberg} problem on $ {\mathbf{S}}^{3}$, and a conjecture of {Bandle{\textendash}Benguria}}, journal = {Comptes Rendus. Math\'ematique}, pages = {153--156}, publisher = {Elsevier}, volume = {341}, number = {3}, year = {2005}, doi = {10.1016/j.crma.2005.06.001}, language = {en}, }
TY - JOUR AU - Wenyi Chen AU - Juncheng Wei TI - On the Brezis–Nirenberg problem on $ {\mathbf{S}}^{3}$, and a conjecture of Bandle–Benguria JO - Comptes Rendus. Mathématique PY - 2005 SP - 153 EP - 156 VL - 341 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2005.06.001 LA - en ID - CRMATH_2005__341_3_153_0 ER -
Wenyi Chen; Juncheng Wei. On the Brezis–Nirenberg problem on $ {\mathbf{S}}^{3}$, and a conjecture of Bandle–Benguria. Comptes Rendus. Mathématique, Volume 341 (2005) no. 3, pp. 153-156. doi : 10.1016/j.crma.2005.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.001/
[1] The Brezis–Nirenberg problem on
[2] Emden–Fowler equations for the critical exponent in
[3] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983), pp. 437-477
[4] Elliptic equations with critical exponent on
[5] Two-bubble solutions in the super-critical Bahri–Coron's problem, Calc. Var. Partial Differential Equations, Volume 16 (2003), pp. 113-145
[6] Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differential Equations, Volume 158 (1999), pp. 1-27
[7] Variational Methods and Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990
[8] Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, Part I:
[9] S.I. Stingelin, Das Brezis–Nirenberg auf der Sphäre
- Nonradial solutions for coupled elliptic system with critical exponent in exterior domain, Discrete and Continuous Dynamical Systems. Series S, Volume 17 (2024) no. 2, pp. 855-876 | DOI:10.3934/dcdss.2023099 | Zbl:1540.35177
- Uniqueness and nondegeneracy of positive radial solutions of
div ( ρ ∇ u ) + ρ ( - gu + hu p ) = 0, Calculus of Variations and Partial Differential Equations, Volume 55 (2016) no. 2 | DOI:10.1007/s00526-016-0970-2 - Bubble solutions for an elliptic problem with critical growth in exterior domain, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 119 (2015), pp. 46-61 | DOI:10.1016/j.na.2014.08.007 | Zbl:1317.35243
- A generalized Pohožaev identity and uniqueness of positive radial solutions of
, Journal of Differential Equations, Volume 255 (2013) no. 12, pp. 4448-4475 | DOI:10.1016/j.jde.2013.08.017 | Zbl:1286.35007 - Isolated boundary singularities of semilinear elliptic equations, Calculus of Variations and Partial Differential Equations, Volume 40 (2011) no. 1-2, pp. 183-221 | DOI:10.1007/s00526-010-0337-z | Zbl:1215.35075
- Multiple clustered layer solutions for semilinear elliptic problems on S
, Communications in Partial Differential Equations, Volume 33 (2008) no. 4, pp. 613-635 | DOI:10.1080/03605300801970911 | Zbl:1196.35107 - Uniqueness for the Brezis-Nirenberg problem on compact Einstein manifolds, Osaka Journal of Mathematics, Volume 45 (2008) no. 3, pp. 609-614 | Zbl:1180.35232
- Non-radial clustered spike solutions for semilinear elliptic problems on
, Journal d'Analyse Mathématique, Volume 102 (2007), pp. 181-208 | DOI:10.1007/s11854-007-0020-2 | Zbl:1132.35363 - Elliptic equations with critical exponent on spherical caps of
, Journal d'Analyse Mathématique, Volume 98 (2006), pp. 279-316 | DOI:10.1007/bf02790278 | Zbl:1151.35035
Cité par 9 documents. Sources : Crossref, zbMATH
Commentaires - Politique