[Parties fractionnaires de puissances et mots sturmiens]
Soit
Let
Accepté le :
Publié le :
Yann Bugeaud 1 ; Artūras Dubickas 2
@article{CRMATH_2005__341_2_69_0, author = {Yann Bugeaud and Art\={u}ras Dubickas}, title = {Fractional parts of powers and {Sturmian} words}, journal = {Comptes Rendus. Math\'ematique}, pages = {69--74}, publisher = {Elsevier}, volume = {341}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2005.06.007}, language = {en}, }
Yann Bugeaud; Artūras Dubickas. Fractional parts of powers and Sturmian words. Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, pp. 69-74. doi : 10.1016/j.crma.2005.06.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.007/
[1] S. Akiyama, Ch. Frougny, J. Sakarovitch, On number representation in a rational base, submitted for publication
[2] Combinatorics on words – a tutorial, Bull. EATCS, Volume 79 (2003), pp. 178-228
[3] Linear mod one transformations and the distribution of fractional parts
[4] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc., in press
[5] A. Dubickas, On the distance from a rational power to the nearest integer, submitted for publication
[6] A. Dubickas, Arithmetical properties of linear recurrent sequences, submitted for publication
[7] A. Dubickas, A. Novikas, Integer parts of powers of rational numbers, Math. Z., in press
[8] Transcendence of numbers with a low complexity expansion, J. Number Theory, Volume 67 (1997), pp. 146-161
[9] On the range of fractional parts
[10] Algebraic Combinatorics on Words, Encyclopedia Math. Appl., vol. 90, Cambridge University Press, Cambridge, 2002
[11] An unsolved problem on the powers of
[12] Symbolic dynamics II: Sturmian sequences, Amer. J. Math., Volume 62 (1940), pp. 1-42
[13] A. Schinzel, On the reduced length of a polynomial with real coefficients, submitted for publication
[14] T. Zaimi, An arithmetical property of powers of Salem numbers, submitted for publication
- Fractional parts of powers of large rational numbers, Discrete Mathematics, Volume 342 (2019) no. 7, p. 1949 | DOI:10.1016/j.disc.2019.03.018
- THE ORBIT OF A β-TRANSFORMATION CANNOT LIE IN A SMALL INTERVAL, Journal of the Korean Mathematical Society, Volume 49 (2012) no. 4, p. 867 | DOI:10.4134/jkms.2012.49.4.867
- On the distribution of powers of a complex number, Archiv der Mathematik, Volume 95 (2010) no. 2, p. 151 | DOI:10.1007/s00013-010-0153-x
- ON THE FRACTIONAL PARTS OF RATIONAL POWERS, International Journal of Number Theory, Volume 05 (2009) no. 06, p. 1037 | DOI:10.1142/s1793042109002535
- Prime and composite integers close to powers of a number, Monatshefte für Mathematik, Volume 158 (2009) no. 3, p. 271 | DOI:10.1007/s00605-008-0042-6
- Two exceptional classes of real numbers, Functiones et Approximatio Commentarii Mathematici, Volume 38 (2008) no. 1 | DOI:10.7169/facm/1229624653
- A note on univoque self-Sturmian numbers, RAIRO - Theoretical Informatics and Applications, Volume 42 (2008) no. 4, p. 659 | DOI:10.1051/ita:2007058
- On the Powers of Some Transcendental Numbers, Bulletin of the Australian Mathematical Society, Volume 76 (2007) no. 3, p. 433 | DOI:10.1017/s0004972700039782
- On a sequence related to that of Thue–Morse and its applications, Discrete Mathematics, Volume 307 (2007) no. 9-10, p. 1082 | DOI:10.1016/j.disc.2006.08.001
- On the fractional parts of the natural powers of a fixed number, Siberian Mathematical Journal, Volume 47 (2006) no. 5, p. 879 | DOI:10.1007/s11202-006-0096-4
Cité par 10 documents. Sources : Crossref
⁎ The research of the first named author was supported by the Austrian Science Foundation FWF, grant M822-N12. The research of the second named author was partially supported by the Lithuanian State Science and Studies Foundation.
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier