[Parties fractionnaires de puissances et mots sturmiens]
Soit un entier. Au moyen de résultats de la combinatoire des mots, nous caractérisons l'ensemble des nombres réels tels que les parties fractionnaires , , appartiennent toutes à un intervalle semi-ouvert ou ouvert de longueur . La longueur d'un tel intervalle ne peut pas être plus petite, c'est-à-dire, quel que soit le nombre irrationnel ξ, aucun intervalle de longueur strictement inférieure à ne contient toutes les parties fractionnaires , .
Let be an integer. In terms of combinatorics on words we describe all irrational numbers with the property that the fractional parts , , all belong to a semi-open or an open interval of length . The length of such an interval cannot be smaller, that is, for irrational ξ, the fractional parts , , cannot all belong to an interval of length smaller than .
Accepté le :
Publié le :
Yann Bugeaud 1 ; Artūras Dubickas 2
@article{CRMATH_2005__341_2_69_0, author = {Yann Bugeaud and Art\={u}ras Dubickas}, title = {Fractional parts of powers and {Sturmian} words}, journal = {Comptes Rendus. Math\'ematique}, pages = {69--74}, publisher = {Elsevier}, volume = {341}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2005.06.007}, language = {en}, }
Yann Bugeaud; Artūras Dubickas. Fractional parts of powers and Sturmian words. Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, pp. 69-74. doi : 10.1016/j.crma.2005.06.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.007/
[1] S. Akiyama, Ch. Frougny, J. Sakarovitch, On number representation in a rational base, submitted for publication
[2] Combinatorics on words – a tutorial, Bull. EATCS, Volume 79 (2003), pp. 178-228
[3] Linear mod one transformations and the distribution of fractional parts , Acta Arith., Volume 114 (2004), pp. 301-311
[4] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc., in press
[5] A. Dubickas, On the distance from a rational power to the nearest integer, submitted for publication
[6] A. Dubickas, Arithmetical properties of linear recurrent sequences, submitted for publication
[7] A. Dubickas, A. Novikas, Integer parts of powers of rational numbers, Math. Z., in press
[8] Transcendence of numbers with a low complexity expansion, J. Number Theory, Volume 67 (1997), pp. 146-161
[9] On the range of fractional parts , Acta Arith., Volume 70 (1995), pp. 125-147
[10] Algebraic Combinatorics on Words, Encyclopedia Math. Appl., vol. 90, Cambridge University Press, Cambridge, 2002
[11] An unsolved problem on the powers of , J. Austral. Math. Soc., Volume 8 (1968), pp. 313-321
[12] Symbolic dynamics II: Sturmian sequences, Amer. J. Math., Volume 62 (1940), pp. 1-42
[13] A. Schinzel, On the reduced length of a polynomial with real coefficients, submitted for publication
[14] T. Zaimi, An arithmetical property of powers of Salem numbers, submitted for publication
Cité par Sources :
⁎ The research of the first named author was supported by the Austrian Science Foundation FWF, grant M822-N12. The research of the second named author was partially supported by the Lithuanian State Science and Studies Foundation.
Commentaires - Politique