Nous montrons une borne pour la régularité de Castelnuovo–Mumford d'un idéal homogène I d'un anneau de polynômes A en termes du nombre de variables et des degrés des générateurs dans le cas où la dimension de est au plus deux. Cette borne améliore celle obtenue par Caviglia et Sbarra dans [G. Caviglia, E. Sbarra, Characteristic-free bounds for the Castelnuovo–Mumford regularity, Prépublication, math.AC/0310122]. Puis, en s'inspirant de l'article Chardin et D'Cruz [M. Chardin, C. D'Cruz, Castelnuovo–Mumford regularity: examples of curves and surface, J. Algebra 270 (2003) 347–360], nous construisons à partir de familles de courbes monomiales des idéaux homogènes ayant une régularité proche des bornes fournies précédemment.
We give a bound on the Castelnuovo–Mumford regularity of a homogeneous ideal I, in a polynomial ring A, in terms of the number of variables and the degrees of generators, when the dimension of is at most two. This bound improves the one obtained by Caviglia and Sbarra in [G. Caviglia, E. Sbarra, Characteristic-free bounds for the Castelnuovo–Mumford regularity, Prépublication, math.AC/0310122]. In the continuation of the examples constructed in Chardin and D'Cruz [M. Chardin, C. D'Cruz, Castelnuovo–Mumford regularity: examples of curves and surface, J. Algebra 270 (2003) 347–360], we use families of monomial curves to construct homogeneous ideals showing that these bounds are quite sharp.
Accepté le :
Publié le :
Marc Chardin 1 ; Amadou Lamine Fall 2
@article{CRMATH_2005__341_4_233_0, author = {Marc Chardin and Amadou Lamine Fall}, title = {Sur la r\'egularit\'e de {Castelnuovo{\textendash}Mumford} des id\'eaux, en dimension 2}, journal = {Comptes Rendus. Math\'ematique}, pages = {233--238}, publisher = {Elsevier}, volume = {341}, number = {4}, year = {2005}, doi = {10.1016/j.crma.2005.06.020}, language = {fr}, }
Marc Chardin; Amadou Lamine Fall. Sur la régularité de Castelnuovo–Mumford des idéaux, en dimension 2. Comptes Rendus. Mathématique, Volume 341 (2005) no. 4, pp. 233-238. doi : 10.1016/j.crma.2005.06.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.020/
[1] On the structure of local cohomology modules for monomial curves in , Nagoya Math. J., Volume 136 (1994), pp. 81-114
[2] Characteristic-free bounds for the Castelnuovo–Mumford regularity (Prépublication) | arXiv
[3] M. Chardin, Regularity of ideals and their powers, Prépublication 364, Institut de mathématiques de Jussieu, Mars 2004
[4] Castelnuovo–Mumford regularity: examples of curves and surface, J. Algebra, Volume 270 (2003), pp. 347-360
[5] Liaison and the Castelnuovo–Mumford regularity, Amer. J. Math., Volume 124 (2002), pp. 1103-1124
[6] Macaulay 2 software http://www.math.uiuc.edu/Macaulay2/
[7] On inflection points, monomial curves, and hypersurfaces containing projective curves, Math. Ann., Volume 306 (1996) no. 4, pp. 719-735
Cité par Sources :
Commentaires - Politique