We study exponential sums of the form , where are relatively prime, p is a polynomial with coefficients in , and for some . We prove an upper bound of the form on . This generalizes a result of J. Bourgain, who establishes this bound in the case where q is odd. This bound has consequences in Boolean circuit complexity.
On étudie les sommes exponentielles de la forme , où sont des entiers premiers entre eux, p est un polynôme à coefficients dans et , avec . On démontre que . Ceci généralise un résultat de J. Bourgain, qui établit cette borne dans le cas où q est impair. Ce théorème a des conséquences dans l'étude de la complexité des circuits booléens.
Accepted:
Published online:
Frederic Green 1; Amitabha Roy 2; Howard Straubing 2
@article{CRMATH_2005__341_5_279_0, author = {Frederic Green and Amitabha Roy and Howard Straubing}, title = {Bounds on an exponential sum arising in {Boolean} circuit complexity}, journal = {Comptes Rendus. Math\'ematique}, pages = {279--282}, publisher = {Elsevier}, volume = {341}, number = {5}, year = {2005}, doi = {10.1016/j.crma.2005.07.011}, language = {en}, }
TY - JOUR AU - Frederic Green AU - Amitabha Roy AU - Howard Straubing TI - Bounds on an exponential sum arising in Boolean circuit complexity JO - Comptes Rendus. Mathématique PY - 2005 SP - 279 EP - 282 VL - 341 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2005.07.011 LA - en ID - CRMATH_2005__341_5_279_0 ER -
Frederic Green; Amitabha Roy; Howard Straubing. Bounds on an exponential sum arising in Boolean circuit complexity. Comptes Rendus. Mathématique, Volume 341 (2005) no. 5, pp. 279-282. doi : 10.1016/j.crma.2005.07.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.07.011/
[1] N. Alon, R. Beigel, Lower bounds for approximation by low-degree polynomials over , in: Annual IEEE Conference on Computational Complexity, vol. 16, 2001
[2] Estimation of certain exponential sums arising in complexity theory, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 627-631
[3] E. Dueñez, S. Miller, A. Roy, H. Straubing, Incomplete quadratic exponential sums in several variables, J. Number Theory, in press
[4] The correlation between parity and quadratic polynomials mod 3, J. Comput. System Sci., Volume 69 (2004) no. 1, pp. 28-44
Cited by Sources:
Comments - Policy